
Automatic generation of term definitions
using multidocument summarisation from the web

Rafael Torralbo1, Enrique Alfonseca1, Antonio Moreno-Sandoval2 and José Maŕıa Guirao3

1Department of Computer Science 2Department of Linguistics 3Department of Computer Science

Universidad Autónoma de Madrid Universidad Autónoma de Madrid Universidad de Granada

e70415@estudiante.uam.es antonio.msandoval@uam.es jmguirao@ugr.es

Enrique.Alfonseca@uam.es

Abstract

This paper describes a new Multi-Document
Summarisation architecture with which it is pos-
sible to collect and summarise documents about
domain-specific terms, and produces a summary
about each of the terms. It has applications in
computational terminology, allowing us to pro-
vide a definition for each of the terms identified.
In particular, the module will be integrated in
an on-line educational system so students can
use it to obtain automatically new information
about the particular terminology used in their
fields of study. An evaluation with computer sci-
ence students shows that they appreciated the
generated summaries, and most of them agreed
in that it would be a useful tool in e-learning
environments.

1 Introduction

Multi-Document Summarisation (MDS) is a task con-
sisting in condensing the information from several doc-
uments in a single document with the most relevant
information. The architectures and techniques used
in MDS can vary depending on the characteristics of
the source documents (genre, media, language, etc.)
and the summary (audience, function, etc). In this
work, we address the problem of applying MDS to the
automatic generation of summaries from various doc-
uments from the web, with the final aim of using them
in an educational system.

The purpose of the proposed system would be the
following: given a list of domain-specific terms, to gen-
erate a definition of each of them. It can be thought
of as a complement of Term Identification (Cabré et
al. 01) procedures, so they are able to provide a small
definition of each of the new terms identified. The
application that we have in mind for the system is
in the field of e-learning: quite often, students find
in textbooks many domain-dependent terms that are
simply introduced without much detail. We consider
that a specialist module in the system capable of find-
ing automatically information about those terms and
generating a summary page would be useful for the
students’ learning process.

In our approach, we have used the World Wide Web
as the source of documents, so the module can be ap-
plied to every domain for which there is information in
the web. Given that this source is not fully reliable, as
it may contain inexact or erroneous information, the

students are always advised that the summary pages
cannot be taken as perfect or authoritative. They are
also able to access the web pages from which the sum-
mary has been generated. This may be useful if they
want to discover who is the author of one of the source
documents from which a dubious assertion has been
extracted.

This module might have other applications, such
as generating automatically reference answers to be
used by programs for Computer-Assisted Assessment
of free-text answers (Valenti et al. 03).

This paper is structured as follows: Section 2 de-
scribes related work both in the field of automatic
MDS and the application of NLP techniques in edu-
cational systems. Next, Section 3 describes the proce-
dure applied in this work, and Section 4 describes the
evaluation performed and the results obtained. Fi-
nally, Section 5 summarises the conclusions and de-
scribes open lines for improving this work.

2 Related work

2.1 Multidocument summarisation

According to (Mani 01), Multi-Document Summarisa-
tion (MDS) systems usually share five steps:

1. Identification of the elements to be extracted
from the collection.

2. Matching instances of these elements across the
texts, to find related elements mentioned in dif-
ferent documents.

3. Filtering the matched elements, to keep the most
salient ones.

4. Compacting them, by aggregating and general-
ising the information they cite.

5. Presenting the results, for instance, with Natu-
ral Language Generation (NLG) or with visuali-
sation methods.

Systems usually differ in the approach chosen for some
step.

Unit identification In MDS, it is common to take
each sentence as a single element. All the same, some
approaches work with clauses, paragraphs or docu-
ments. The compression rate is usually why different
units are chosen: if it is very large, then there is gen-
erally more need to use units smaller than sentences;
and, if it is small, paragraphs can be considered units.

Unit matching A very common procedure to match
units from different documents consists of using a bag-
of-words procedure, by characterising each unit with
the set of words contained in it. The vectors can
include, together with the words, their frequencies.
These can also be transformed into weights, using
functions such as tf·idf, χ2 or Student’s t-score. The
cosine similarity, calculated by considering the two sets
of words as vectors in an N -dimensional space (where
N is the size of the vocabulary) is one of the most
commonly used similarity functions in Information Re-
trieval (Salton 89). Other functions used are the scalar
product or the Jaccard coefficient. Other common ex-
tension to VSM is the dimensionality reduction per-
formed by means of Latent Semantic Analysis (LSA)
(Deerwester et al. 90), which has also been applied in
MDS systems (Ando et al. 00).

Unit filtering Using the similarity metrics from the
Vector Space Model, it is possible to cluster the units,
so those with a high degree of salient-vocabulary over-
lapping will be grouped together (Angheluta et al. 04;
Erkan & Radev 04; Saggion & Gaizauskas 04). Small
clusters with few representatives can also be consid-
ered not very important and can be discarded. Some
approaches also try to improve the quality of the clus-
ters by filtering the units whose similarity with all
the others inside the cluster is not above a threshold
(Blair-Goldensohn et al. 04).

Other procedure is to score the units using a
cohesion-based weighting metric (Mani & Bloedorn
99). Possible cohesion relationships are identity rela-
tionships between words, synonymy, proximity, coref-
erence and hyperonymy. Sentences whose words have
many relationships with words from other units will re-
ceive a higher score, and will be selected. Yet another
possibilities consist in giving higher weights to the NPs
that appear in long coreference chains (Witte et al.
04), and in creating a graph of terms (or events), and
next apply a graph-scoring algorithm (Vanderwende et
al. 04; Erkan & Radev 04), such as Pagerank (Brin &
Page 98).

In order to select the most relevant units, there are
other heuristics which are also used in single-document
summarisation, such as unit position and length, or
calculating how many terms from the headline appear
in every unit. (Nobata & Sekine 04) divides the doc-
uments in two groups according to the term distri-
butions, and applies the heuristic based on the unit
position just in those groups which appear to contain
the key units at the beginning. In MDS, (Witte et
al. 04) rank NPs in all the documents based on the
length of cross-document coreference chains, and also
give highest weights to the NPs that appear in the first
units. Finally, the units with the highest-ranking NPs
are selected for the summary.

Concerning the size of the units, although most
systems mainly work with sentences, some of them
also filter clauses and phrases in this step. Common

heuristics are to remove relative clauses and apposi-
tives (Blair-Goldensohn et al. 04; Conroy et al. 04).

Unit compacting If the units have been grouped in
clusters in the previous step, it can be expected that
the units which are in the same cluster contain repet-
itive information and, thus, it should be possible to
choose just one from each cluster so as to generate the
summary. The unit chosen is usually the one closest
to the centroid of the cluster (Blair-Goldensohn et al.
04).

(Barzilay et al. 99) uses a more sophisticated ap-
proach, by parsing all the units in each cluster with
a syntactic analyser, and matching the parse trees
with each other. In this matching, they use para-
phrasing rules (e.g. transforming passive verbs into
active verbs) to discover whether they are compatible
units. Finally, the units that matched can be merged
together with a syntax-based generation procedure.

Results generation and presentation In many
cases, systems select units from the documents and put
them together. At most, they perform small modifi-
cations to them, e.g. by removing relative clauses and
appositions, normalising personal names, or removing
dangling conjunctions. A few approaches, however,
either transform the texts into a logical form (Vander-
wende et al. 04), or apply Information Extraction pro-
cedures to fill in templates from the text (Harabagiu
& Maiorano 02). In these cases, it is possible to use
a Natural Language Generation system to write the
summary from the extracted information.

2.2 Applying NLP techniques to e-learning

NLP techniques have been applied to e-learning ap-
plications since the sixties. The Project Essay Grader
(Page 66) was probably the first system that appeared
to automatically score open-ended questions written by
students. It was later extended with part-of-speech
tagging and syntactic analysis (Page 94). In recent
years, there has been an upsurge of research in the field
of free-text Computer Assisted Assessment (Valenti et
al. 03), with systems such as E-rater (Burstein et al.
98), C-rater (Burstein et al. 01), Automark (Mitchell
et al. 02), BETSY (Rudner & Liang 02) or Atenea
(Alfonseca & Pérez 04).

Other common applications of NLP to e-learning
are systems to generate, automatically, multi-choice
questions (Mitkov & An-Ha 03; Liu et al. 05), or to
teach and correct the grammar of sentences (Virvou et
al. 00). Natural Language Generation and Text Sum-
marisation have also been applied to on-line informa-
tion systems, an application which might as well be
considered educational (Milosavljevic et al. 98; Ober-
lander et al. 98; Alfonseca & Rodŕıguez 03b; Alfonseca
& Rodŕıguez 03a).

Document identification

Document matching and filtering

Document compaction

Paragraph identification

Paragraph matching and filtering

Paragraph compaction

Figure 1: Architecture of the system.

3 Procedure

The architecture designed for this task includes the
five common steps for MDS: identification, matching,
filtering and compacting the units, and presenting the
results. The main difference with respect to other ap-
proaches is that most of the systems reported gener-
ally assume that the set of documents from which to
summarise are all relevant with respect to the topic.
That is the case, for instance, in the Document Under-
standing Conferences. However, in our situation, if we
download documents from Internet about a term, we
are never going to be sure that the documents really
refer about our term, used with the desired meaning.
Therefore, the five mentioned steps have been dupli-
cated in a two-tier architecture:

1. Firstly, we apply the identification, matching and
filtering steps using as textual unit whole docu-
ments. The purpose of these steps is to keep just
the documents which are most relevant about the
term.

2. Secondly, once we have filtered the set of doc-
uments, they have to be compacted. This step
consists of applying the five steps again, but us-
ing now, as unit, a paragraph. In this second tier,
the system identifies paragraph boundaries, de-
cides which paragraphs seem more relevant, and
merges the information from them.

Figure 1 displays the architecture of the system.
The following sections describe each step in detail.

3.1 1st tier: document-based summarisation

Input data We assume that the glossary is a list of
terms. Although this is not a requirement of the sys-
tem, in the ideal case, the glossary contains, for each
term, a very brief definition. This glossary could be
either written by hand by the user, obtained automat-
ically with a search of glossaries about the desired do-
main in the web, or obtained with an automatic Term
Identification procedure. The glossary used in our ex-
periments has been obtained with a search about Op-
erating Systems in the web. Figure 2 shows the first
six words in the list used, and their brief descriptions.

Once the system receives the glossary, it analyses
each definition applying tokenisation, sentence split-
ting, part-of-speech tagging, stemming and partial
parsing with the wraetlic tools (Alfonseca 03). Fur-
thermore, the system identifies whether the meaning
of an acronym is written in the definition, by checking
that there is a sequence of words starting with capital
letters that correspond to the letters of the term.

Document retrieval With this information, the
system is now able to construct a query for the Google
search engine, to retrieve a set of documents for each
of the terms. To build the query, we always include, as
compulsory keywords, the name of the term to be de-
fined, followed by the verb “is” (to favour those pages
in which the term is defined). Additionally, the query
is extended with the following optional keywords:

• If no definitions are available, other terms from
the list can be added as optional keywords in the
query, trying to guide the search engine towards
pages whose domain is the same as the glossary.

• If the meaning of the acronyms are available, and
the term is an acronym, the first optional key-
words to be added are the words in the acronym,
followed as well by the verb to be. For instance, if
the term is ASCII, the optional keyword will be
American Standard Code for Information Inter-
change is.

• Finally, if brief definitions are available, the re-
maining optional words are the rest of the words
in the definition, excluding closed-class words.

Note that Google just considers the first ten optional
keywords, so those that are afterwards will be ignored.
In several experiments, we have found that we obtain
the best results if we start with the nouns from the
term definition, followed by the verbs, and we leave
the adjectives and the adverbs until the end.

Once we have constructed the query, we ask Google
to return the first 100 URLs that answer it. In order to
maximise the variability of the results, we have added
the additional restriction that all the pages must be
retrieved from different hosts. In this way, we con-
tinue asking for more results until we have collected
100 pages from different hosts, or until there are no
more results.

The web pages are next transformed into XML for-
mat, in which the only format that is preserved is the
paragraph boundaries. This format will be suitable to
be processed with the aforementioned linguistic pro-
cessing tools for morphological and syntactic analysis.

Document filtering Next, the system filters the re-
sults provided by the search engine. In our exper-
iments, a manual evaluation has disclosed that less
than 30% of the retrieved pages really verse about the
term that we want to define. Therefore, it will be use-
ful if we can automatically remove, from the set of
documents, the lest relevant ones.

The procedure followed is the following: every docu-

ANSI American National Standardisation Institute
ASCII American Standard Code for Information Interchange - a table converting numeric values into

human readable characters.
API Application Programming Interface - the set of routines/functions made available to a program

developer.
ATA AT Attachment - also known as IDE.
ATAPI ATA Packet Interface - minor extension to IDE to control additional device types.
BASIC Beginners All-purpose Symbolic Instruction Code - a high-level interpreted programming language

which is very easy to learn.

Figure 2: Sample words at the beginning of the glossary used in the experiments.

ment is represented in the VSM as the vector of words
contained in it with their frequencies. Using the small
definition from the glossary, we shall generate another
vector that represents the term. If the glossary does
not contain definitions, other terms from the same
glossary can be used to calculate this vector. Finally,
we calculate the cosine distance between the vector of
each document and the vector of the definition. Only
the documents with the highest scores are kept. Sec-
tion 4 discusses the recall/precision curves obtained in
this step.

It should be born in mind that, at this step, we
can take advantage of the fact that the web contains a
high level of redundancy, which implies that many of
the retrieved web pages contain repeated information.
This means that we can afford to lose some relevant
data, because we can be quite confident that it will
appear in some other document. In other words, it
is more important to obtain a good precision at this
step than to try to maximise the recall, because we
can assume that we can afford to lose some relevant
(but redundant) documents.

3.2 2nd tier: paragraph-based summarisation

Paragraph identification and filtering Once the
most relevant documents have been filtered, the next
steps would be the document compaction. At this
point, the second tier of the architecture starts func-
tioning, now processing the paragraphs.

All the documents have been processed, and they
are annotated with paragraph boundaries. At the be-
ginning of the second tier, the paragraphs have to be
analysed, and those which are not judged relevant will
be filtered out. Web pages usually contain naviga-
tion instructions, menus, titles and foot-pages which
will not be relevant at all. A manual observation of
the web pages showed that there are a few lexico-
syntactic patterns with which we can identify most
of the paragraphs that define the terms, such as when
the term appears in the subject position of the verb
to be. These kind of lexico-syntactic heuristics and
patterns have also been used previously for generating
definitions and biographies in other MDS systems (Al-
fonseca & Rodŕıguez 03a; Lacatusu et al. 04; Erkan
& Radev 04). This procedure has been complemented
with the heuristic that a unit that is in between two
relevant units will also contain relevant information.

Therefore, the algorithm for filtering the paragraphs
is the following:

1. Annotate all the paragraphs in which the term to
be defined appears either as the syntactic subject
or as the agent, in the case of passive sentences.

2. Filter in all the paragraphs p that
• Either p has the term as the subject of to be

in a sentence.
• Either there is one paragraph p1 before p and

one paragraph p2 after p for which the term
is the subject in a sentence, and there are less
than three paragraphs in between p1 and p2..

In this way, if there are just one or two paragraphs in
between two that have been considered relevant, they
will be filtered in as well.

The filtered paragraphs are next cleaned, to remove
sentences that are usually incorrect or uninformative:
interrogative phrases, unfinished sentences (e.g. those
that end with a preposition or a comma), or sentences
that start with lowercase.

Summary generation After filtering the para-
graphs, it is necessary to compact them, by integrat-
ing the information from all the paragraphs in a single
summary. In this step, we have assumed that all the
paragraphs are internally well structured, and written
in a coherent way. Therefore, we would like to retain
as much as possible the inner structure of all the para-
graphs. This means that if one sentence s1 is written
before other sentence s2 inside an original paragraph,
we would like to preserve that ordering between the
two sentences in the final summary, because there is
a correct discursive ordering in which s1 should come
before.

To aggregate the paragraphs while satisfying this
constraint, we have devised an algorithm in which, ini-
tially, we take one paragraph p as an initial model sum-
mary, and we proceed by alternating sentences from
the other paragraphs, in the same order in which they
were written, in between the sentences p, in an incre-
mental way.

The following algorithm merges the sentences from
several paragraphs in single summaries:

1. For each paragraph pk,
(a) Initialise the target summary Sumk as an

empty text.
(b) Let p = pk.
(c) Remove the first sentence s from p, and add

it at the end of Sumk.
(d) Calculate the similarity between s and the

first sentence of all the paragraphs. It is cal-
culated using the VSM, and the similarity
metric used is the size of the intersection of
the two vectors of words. Note that, now,
the first sentence of p is the sentence that
was right after s.

(e) Let p be the paragraph whose first sentence
maximises the similarity, and go back to step
(c) with that paragraph. If the best similarity
is 0, stop.

2. At this point we have k different summaries, de-
pending on the paragraph that we took as start-
ing point. It should be possible to allow the user
to choose which one to read, but the summary
recommended by the system is the one that max-
imises the number of sentences.

It can be seen that, in the summary, all the sentences
that stem from the same paragraph appear in the same
order.

Last of all, we perform a few procedures to try to
improve the readability of the generated summaries:

• If a sentence starts with a conjunction, and the
previous sentence does not come from the same
paragraph, remove the conjunction, because it is
probably dangling.

• If two sentences have more than 75% of their vo-
cabulary overlapping, remove the shortest one,
because they are probably redundant.

• If the term can be written in several ways (e.g.
ASCII and American Standard Code for Infor-
mation Interchange), substitute all but the first
appearances of the longest by the shortest. In
this way, the meaning of the acronyms will only
appear the first time.

• If the subject of a sentence is the same as the
subject of the previous sentence, substitute it for
the pronoun it.

Figure 3 shows an example of two generated sum-
maries.

4 Evaluation and results

Figure 4 shows the recall/precision curves of the doc-
ument filtering step. For the first ten terms, all the
documents downloaded (678 in total) have been classi-
fied manually as relevant and irrelevant. Out of them,
200 (29.5%) were judged relevant. As it is well known,
there is always a trade-off between precision and recall.
In our case, we have chosen to keep the upper 37.5%
of the documents whose similarity with the term defi-
nition is above the average similarity.

The quality of the generated summaries has been
evaluated by hand, using a set of quality questions
developed at NIST by the organisers of the Docu-
ment Understanding Competition-20051. There are

1Obtained from Hoa T. Dang via the DUC e-mail list

Figure 4: Recall and precision depending on the per-
centage of documents retained.

five features of the summary that are evaluated inde-
pendently:

• Grammaticality: the summary should not contain
ungrammatical sentences or format instructions
which make it difficult to read it.

• Non-redundancy: there should not be unneces-
sary repetitions, such as repeated sentences or
personal names.

• Referential clarity: it should be easy to identify
the referent of the pronouns and noun phrases.

• Focus: the summaries should be centred on the
term to define.

• Structure and coherence: the summaries should
be well structured and organised.

Eight Computer Science students, all of them with a
background in Operating Systems, participated in the
evaluation. They were divided into two groups, and
each member in each group was assigned six random
summaries. In this way, each summary was scored by
two different judges. Each student had to read each
summary and provide a score, in a scale from 1 to
5, to the five features. In total, 24 summaries were
evaluated twice.

Table 1 displays the results obtained. As expected,
grammaticality received the highest score, with a mean
value of 4.17. This is because the summaries consist
of sentences extracted from web pages, which are ex-
pected to be written by hand, grammatically. It came
as a surprise that referential clarity also received a
high score, 3.96. Given that the summaries are finally
produced by merging together several paragraphs, this
can be due to the fact that, in most of the cases, the
paragraphs are self-contained, and they do not contain
references to previous paragraphs that may have been
filtered out.

Slightly lower values were obtained in the features
of non-redundancy and focus. Although we dedi-
cated some effort to eliminating very similar sentences
and substituting repeated proper names by pronouns,
there are, however, long sentences that only have some
part in common. We should compare clauses rather

ASCII The American Standard Code for Information Interchange is a set of integers running from 0 to 127 (decimal) that imply character interpretation
by the display and other system (s) of computers. It is a standard way of representing characters on many computer systems. ASCII is a standard
way of representing text as numbers. It is the most common format for text files in computers and on the Internet. It actually was developed for
teletype machines and predates computers. This leads to a minor headache in using it. In an ASCII file, each alphabetic, numeric, or special character
is represented with a 7-bit binary number (a string of seven 0s or 1s). 128 possible characters are defined. The range 0..127 can be covered by setting
the bits in a 7-bit binary digit, hence the set is sometimes referred to as a 7-bit ASCII. ASCII is the original 7-bit character set, originally designed
for American English. The term ASCII file “is often used as a synonym for plain text file” (which is actually based on ISO Latin 1, not ASCII), a file
without any special formatting, which can be viewed using UNIX system utilities such as cat (1), more (1), and vi (1). When referring to ASCII, many
people erroneously include all the characters in the IBM PC extended character set. This set consists of 254 letters, technical symbols, graphics block
characters, and 32 control characters that you do not usually see. The characters with numbers above the original 128 ASCII characters are sometimes
referred to as higher-order ASCII characters, but an ASCII file is a file containing only the 128 original ASCII characters. It is currently described by
the ECMA-6 standard. ASCII was described by the American National Standards Institute document ANSI X3.4-1986. It was also described by ISO
646: 1991 (with localization for currency symbols). The full ASCII set is given in the table below as the first 128 elements. Languages that can be
written adequately with the characters in ASCII include English, Hawaiian, Indonesian, Swahili and some Native American languages.

CPU The CPU is responsible for the actual execution of the instructions contained in the programs. During execution these programs and the data
they operate on are usually stored in memory . In the data processing field, CPU is well known to be the center of the computer system in that it
governs all information transfers between itself and memory and between memory and the input/output devices. It is the component of the computer
system that habitually is used to describe what ’type’ of computer you have (i.e. a Pentium 166 MMX System, a Celeron 566 System, a Pentium III
800 System). The CPU is the brain of the computer. It is responsible for executing the machine code instruction set that controls the system. As
known, CPU also executes all instructions and determines the orderly sequence of instruction execution. It fetches these instructions from memory and
these instructions control every aspect of the computer’s operations. Intermediate results are saved and later read from memory. Many people make
the mistake of assuming that the CPU is the most important component in the system because of this habit.

Figure 3: Generated summaries for the terms ASCII and CPU.

Grammaticality Non redundancy Referential clarity Focus Structure
Mean judges group 1 4.25 3.63 3.83 3.58 3.46
Mean judges group 2 4.08 3.67 4.08 3.71 3.42
Mean 4.17 3.65 3.96 3.67 3.44
Standard deviation 0.97 1.16 1.07 1.23 1.15
0.95 Confidence interval [3.64,4.69] [3.02,4.27] [3.38,4.53] [3.04,4.29] [2.78,4.09]

Table 1: Results obtained in the manual evaluation of the summaries according to the criteria proposed by the
NIST organisers of the DUC-2005 competition.

than sentences, for instance, to remove subordinate
clauses, to decrease the degree of redundancy. On the
other hand, the scores obtained for the feature focus,
as can be seen, are those with the highest standard
deviation. This is because the focus has received both
very high scores, and very low scores. We have identi-
fied the following difficult cases:

• For some terms, such as basic, handle and process,
the filtering steps were not completely successful,
and pages which were not relevant entered the last
step. Therefore, the summaries generated con-
tain, respectively, sentences about simple things,
about door handles, and about legal processes.

• In other cases, the summary did not focus on the
term defined, but on differences with other related
terms. For instance, the summary about paging
only discusses the differences between paging and
swapping, and the summary about SCSI only de-
scribes it with respect to IDE.

• Finally, for very common words, such as API and
CD-ROM, together with general pages describing
those terms, many pages about particular APIs
or CD-ROMs were also selected.

Finally, as expected, the feature which received the
lowest score was the structure of the summaries. The
score was higher or equal to 4 in 26 judgings, which
indicates that the procedure used to merge the para-
graphs succeeds in producing a well-organised para-
graph more than half of the times. However, some
other times, the summaries have received low scores,
specially when very different paragraphs in summaries
that were not well focused were merged together.

Educational value The student were also asked to
answer whether they would be willing to use this fea-
ture in an educational system. All of them agreed
that the students should be warned that the informa-
tion had been collected automatically from an unre-
liable source and might contain errors. The answers
obtained, in a score of 1 to 5, were three 3’s, four 4’s
and one 5, with an average value of 3.75. Therefore,
we can say that most of them value the use of this
facility in an e-learning system.

5 Conclusions and future work

In this work, we present a new architecture for
Multi-Document Summarisation, with an application
for automatically generating descriptions of domain-
dependent terms obtained from a glossary. Given that
the focus of the original documents is not guaranteed
when we collect them from the Internet, the summari-
sation has been divided into two selection steps: ini-
tially, the documents are matched with the brief defi-
nitions or with the other terms from the glossary to fil-
ter out the most dissimilar ones; and, in a second step,
the paragraphs from those documents are filtered out
using some heuristics. Finally, the information from
those paragraphs is put together in the final summary.
The evaluation performed with eight students from a
Computer Science MSc course shows that the sum-
maries were considered better than average in all their
features, with specially good results on grammaticality
and referential clarity.

We envision the following lines of future work: (a) to

optimise the document filtering step, for instance, by
combining it with an automatic clustering of the doc-
uments, so the precision/recall curve improves. This
will probably improve the focus of the generated sum-
maries; (b) to combine it with NLG techniques or dis-
course planners, using information from other para-
graphs that we are currently filtering out; (c) to im-
prove the procedure for eliminating the redundancies,
so we do not eliminate sentences but portions of sen-
tences which may be repeated; and (d) to integrate
the system both in our e-learning environment Tangow
(Carro et al. 99) and with a Term Identification mod-
ule, so it provides the definitions of the terms found in
course-ware materials and domain-dependent texts.

References
(Alfonseca & Pérez 04) E. Alfonseca and D. Pérez. Automatic as-

sessment of short questions with a bleu-inspired algorithm and
shallow nlp. In Advances in Natural Language Processing, vol-
ume 3230 of Lecture Notes in Computer Science, pages 25–35.
Springer Verlag, Berlin-Heidelberg, 2004.

(Alfonseca & Rodŕıguez 03a) E. Alfonseca and P. Rodŕıguez.
Extending an on-line information site with accurate domain-
dependent extracts from the world wide web. In Semantic Web
for Web Learning workshop, CAiSE’2003, 2003.

(Alfonseca & Rodŕıguez 03b) E. Alfonseca and P. Rodŕıguez. Mod-
elling users’ interests and needs for an adaptive on-line informa-
tion system. In User Modelling 2003, volume 2702 of Lecture
Notes in Artificial Intelligence, pages 76–80. Springer, 2003.

(Alfonseca 03) E. Alfonseca. Wraetlic user guide version 1.0.
http://www.eps.uam.es/˜ealfon/download.html, 2003.

(Ando et al. 00) R. K. Ando, B. K. Boguraev, R. J. Byrd, and
M. S. Neff. Multi-document summarization by vsualizing topical
content. In Proceedings of the workshop on automatic summa-
rization, pages 79–88, 2000.

(Angheluta et al. 04) R. Angheluta, R. Mitra, X. Jing, and M.-
F. Moens. K. u. leuven summarization system at DUC 2004. In
Proceedings of the Document Understanding Proceedings Work-
shop, DUC-2004, Boston, MA, 2004.

(Barzilay et al. 99) R. Barzilay, K. McKeown, and M. Elhadad.
Information fusion in the context of multi-document summariza-
tion. In Proceedings of the 37th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 550–557, 1999.

(Blair-Goldensohn et al. 04) S. Blair-Goldensohn, D. Evans, V. V.
Hatzivassiloglou, K. McKeown, A. Nenkova, R. Passonneau,
B. Schiffman, A. Schlaikjer, A. Siddharthan, and S. Siegel-
man. Columbia university at duc-2004. In Proceedings of the
Document Understanding Proceedings Workshop, DUC-2004,
Boston, MA, 2004.

(Brin & Page 98) S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks and ISDN
Systems, 30:107–117, 1998.

(Burstein et al. 98) J. Burstein, K. Kukich, S. Wolff, C. Lu,
M. Chodorow, L. Bradenharder, and M. Dee Harris. Automated
scoring using a hybrid feature identification technique. In Pro-
ceedings of the Annual Meeting of the Association of Compu-
tational Linguistics, Montreal, Quebec, Canada, 1998. The As-
sociation of Computational Linguistics.

(Burstein et al. 01) J. Burstein, C. Leacock, and R. Swartz. Auto-
mated evaluation of essays and short answers. In Proceedings of
the 5th International Computer Asssited Assessment Confer-
ence, Loughborough, U.K., 2001.

(Cabré et al. 01) M. T. Cabré, R. Estopá, and J. Vivaldi. Automatic
term detection: a review of current systems. In Recent advances
in computational terminology, volume 2 of Natural Language
Processing, pages 53–87. John Benjamins, 2001.

(Carro et al. 99) R. M. Carro, E. Pulido, and P. Rodŕıguez. Dy-
namic generation of adaptive internet-based courses. Journal of
Network and Computer Applications, 22:249–257, 1999.

(Conroy et al. 04) J. M. Conroy, J. D. Schlesinger, J.Goldstein, and
D. P. O’Leary. Left-brain/right-brain multi-document summa-
rization. In Proceedings of the Document Understanding Pro-
ceedings Workshop, DUC-2004, Boston, MA, 2004.

(Deerwester et al. 90) Scott C. Deerwester, Susan T. Dumais,
Thomas K. Landauer, George W. Furnas, and Richard A. Harsh-
man. Indexing by latent semantic analysis. Journal of the Amer-
ican Society of Information Science, 41(6):391–407, 1990.

(Erkan & Radev 04) G. Erkan and D. R. Radev. The university of
michigan at duc 2004. In Proceedings of the Document Under-
standing Proceedings Workshop, DUC-2004, Boston, MA, 2004.

(Harabagiu & Maiorano 02) S. Harabagiu and S: Maiorano. Multi-
document summarization with gistexter. In Proceedings of the
Third Language Resources and Evaluation Conference (LREC-
2002), Las Palmas, 2002.

(Lacatusu et al. 04) F. Lacatusu, A. Hickl, S. Harabagiu, and
L. Nezda. Lite-GISTexter at DUC2004. In Proceedings of the
Document Understanding Proceedings Workshop, DUC-2004,
Boston, MA, 2004.

(Liu et al. 05) C.-L. Liu, C.-H. Wang, and Z.-M. Gao. Using lexical
constraints for corpus-based generation of multiple-choice cloze
items. In Proceedings of The Second Workshop on Building
Educational Applications Using Natural Language Processing,
2005.

(Mani & Bloedorn 99) I. Mani and E. Bloedorn. Summarising sim-
ilarities and differences among related documents. Information
Retrieval, 1(1):35–67, 1999.

(Mani 01) I. Mani. Automatic Summarization. John Benjamins
Publishing Company, 2001.

(Milosavljevic et al. 98) M. Milosavljevic, R. Dale, S. J. Green,
C. Paris, and S. Williams. Virtual museums on the informa-
tion superhighway: Prospects and potholes. In Proceedings of
CIDOC’98, the Annual Conference of the International Com-
mittee for Documentation of the International Council of Mu-
seums, Melbourne, Australia, 1998.

(Mitchell et al. 02) T. Mitchell, T. Russell, P. Broomhead, and
N. Aldridge. Towards robust computerised marking of free-text
responses. In Proceedings of the 6th International Computer-
Assissted Conference, pages 233–249, Loughborough, U.K.,
2002.

(Mitkov & An-Ha 03) R. Mitkov and L. An-Ha. Computer-aided
generation of multiple-choice tests. In Proceedings of the HLT-
NAACL 2003 Workshop on Building Educational Applications
Using Natural Language Processing, pages 17–22, Edmonton,
Canada, 2003.

(Nobata & Sekine 04) C. Nobata and S. Sekine. CRL/NYU
summarization system at DUC-2004. In Proceedings of the
Document Understanding Proceedings Workshop, DUC-2004,
Boston, MA, 2004.

(Oberlander et al. 98) J. Oberlander, M. O’Donell, C. Mellish, and
A. Knott. Conversation in the museum: experiments in dynamic
hypermedia with the intelligent labeling explorer. The new re-
view of multimedia and hypermedia, 4:11–32, 1998.

(Page 66) E.B. Page. The imminence of grading essays by computer.
Phi Delta Kappan, 1966.

(Page 94) E.B. Page. Computer grading of student prose, using
modern concepts and software. Journal of Experimental Educa-
tion, 2(62):127–142, 1994.

(Rudner & Liang 02) L.M. Rudner and T. Liang. Automated es-
say scoring using bayes’ theorem. In Proceedings of the annual
meeting of the National Council on Measurement in Education,
2002.

(Saggion & Gaizauskas 04) H. Saggion and R. Gaizauskas. Multi-
document summarization by cluster/profile relevance and redun-
dancy removal. In Proceedings of the Document Understanding
Proceedings Workshop, DUC-2004, Boston, MA, 2004.

(Salton 89) G. Salton. Automatic text processing. Addison-Wesley,
1989.

(Valenti et al. 03) S. Valenti, F. Neri, and A. Cucchiarelli. An
overview of current research on automated essay grading. Jour-
nal of Information Technology Education, 2:319–330, 2003.

(Vanderwende et al. 04) L. Vanderwende, M. Banko, and
A. Menezes. Event-centric summary generation. In Proceedings
of the Document Understanding Proceedings Workshop, DUC-
2004, Boston, MA, 2004.

(Virvou et al. 00) M. Virvou, D. Maras, and V. Tsiriga. Student
modelling in an intelligent tutoring system for the passive voice
of english language. Educational Technology and Society, 3(4),
2000.

(Witte et al. 04) R. Witte, A. Bergler, Z. Li, and M. Khalifé. Multi-
erss and erss 2004. In Proceedings of the Document Understand-
ing Proceedings Workshop, DUC-2004, Boston, MA, 2004.

