
Tree bimorphisms and their relevance in the theory of translations

Cătălin-Ionuţ Tîrnăucă

Rovira i Virgili University, Research Group on Mathematical Linguistics

Plaça Imperial Tàrraco 1, 43005, Tarragona, Spain

catalinionut.tirnauca@estudiants.urv.cat

Abstract
In the past few years, it was argued that in natural language processing (and especially in machine translation)

researchers should focus more on formalisms that can model trees and tree transformations since they can

capture syntax-sensitive transformations and execute certain reorderings of parts of sentences. Also, the closure

under composition of such classes of tree transformations was stated as a necessary condition for improving

translations: it is always easier to decompose a translation into smaller pieces which are easier to train, test and
understand, and then obtain the original translation as a composition of them. We offer a quick and rather

informal survey of formalisms that define classes of tree transformations: tree homomorphisms, tree transducers

and synchronous grammars. Also, we present another approach towards the achieving of closure under

composition property of such classes, the tree bimorphism, and we revisit some of the most recently obtained

results.

Key words: machine translation, tree transformation, tree bimorphism, synchronous grammars.

Resum

Durant els darrers anys s'ha defensat que en processament del llenguatge natural (i especialment en traducció

automàtica), els investigadors s'haurien de centrar especialment en formalismes capaços de modelar arbres i

tranformacions d'arbres. La raó principal es que es creu que aquests formalismes poden ser un bon instrument

per explicar las transformacions sensibles a la sintaxi i executar certes reordenacions de parts de l'oració. D'altra

banda, la clausura respecte a la composició d'algunes classes de transformacions d'arbres ha estat considerada
com una condició necessària per millorar les traduccions: sempre és més facil descomposar una traducció en

peces més petites, que es poden optimitzar, comprovar i comprendre més fàcilment, i després obtenir una

traducció original tot composant-les. En aquest article oferim una visió general i informal dels formalismes que

defineixen les classes de transformacions d'arbres: homomorfismes d'arbres, transductors d'arbres i gramàtiques

síncrones. A més, presentem un enfocament relativament nou per aconseguir la clausura respecte a la
composició en aquestes classes, els bimorphismes d'arbres, y repassem alguns dels resultats obtinguts

recentment.

Mots clau: traducció automàtica, transformacions d'arbres, bimorfismes d'arbres, gramàtiques síncrones.

Resumen
En los últimos años se ha discutido que en procesamiento del lenguaje natural (y especialmente en traducción

automática), los investigadores deberían centrase especialmente en formalismos capaces de modelar árboles y

transformaciones de árboles, puesto que estos mecanismos pueden detectar las transformaciones sensibles a la

sintaxis y ejecutar ciertos reordenamientos de partes de la oración. Por otra parte, la clausura bajo la

composición de estas clases de transformaciones de árboles se ha considerado como una condición necesaria

para mejorar las traducciones: siempre es mejor descomponer una traducción en piezas pequeñas, que son más
fáciles de comprobar, mejorar y comprender, y después obtener la traducción original como una composición de

ellas. En este artículo se ofrece un panorama rápido e informal de los formalismos que definen las clases de

trasformaciones de árboles: homomorfismos de árboles, transductores de árboles, y gramáticas síncronas.

Además, presentamos un enfoque relativamente nuevo para conseguir la clausura bajo la composición de estas

clases, el bimorfismo de árboles, y repasamos algunos de los resultados recientemente obtenidos.

Palabras clave: traducción automática, transformaciones de árboles, bimorfismos de árboles, gramáticas

síncronas.

Table of contents
1. Introduction
2. Ways to define tree transformations

2.1 Trees

2.2 Tree Transformations

2.3 Tree Homomorphisms

2.4 Tree transducers

2.5 Synchronous grammars
3. What is a tree bimorphism?

4. What can we obtain with the help of tree bimorphisms?

5. An extended example

6. Conclusions and future work

7. Acknowledgements

8. Bibliography

1. Introduction

Automatic translation between natural languages has become a true necessity for present-day

society since international communication is increasing very fast (for example, due to the

Internet), and this has stimulated the development of appropriate mathematical models and

tools. Because of their attractive properties and well-developed theory, finite state machines,

usually with some probability or weight features, were used with considerable success:

(Brown et al 1993), (Mohri 1997), (Knight and Al-Onaizan 1998).

But in natural language translations there are many particularities and ambiguities that have

to be considered. For example in English, the sentence “I have painted walls” has at least two

meanings depending on how “painted” is interpreted: as an adjective or as a part of the verb

of the sentence. Therefore, it is difficult to perform always a correct translation if the

sentence is treated outside of the context in which it appears. Also, the structure of the

English sentences is different from Arabic or German sentences. So, in most cases both the

syntax (specifies the structure of an input sentence), and the semantics (associates a meaning

to each structure of an input sentence) are needed.

Usually, the input sentence (which has to be a correct sentence of the input language) must

have a certain structure. It seems natural and convenient to use the tree structure of a string,

called parse tree or derivation tree, which describes how the sentence can be obtained by

applying the grammatical rules of the language. Parsing represents the process of analyzing

an input sentence and determining the syntactic structure associated with it. As an example,

every English sentence can be decomposed in syntactic categories: noun phrase, verb phrase,

determiner, etc. These are related by grammatical rules: a sentence is composed of a noun

phrase and a verb phrase; a noun phrase can be formed by a determiner and a noun, etc. More

about parsing can be found in: (Aho and Ullman 1972). Even if word-for-word translation

models use contexts to disambiguate, they do not take advantage of the full syntactical

information of a parse tree, so more powerful devices were called for.

Thus in the last couple of years, researchers from computational linguistic community have

shown an increasing interest in formalisms that can model trees and tree transformations,

especially because of their ability to capture syntax-sensitive processes and perform different

reorderings of parts of sentences. Thus, the new field of syntax-based machine translation

was established; e.g., see (Knight and Graehl 2005) and the references therein. There are

several tools that can be used for the above-mentioned purpose: tree homomorphisms and

tree transducers, studied in formal language theory, and synchronous grammars, proposed by

linguists’ community.

Also, the accuracy is an important issue in machine translation (MT), so the whole theory

should rely on a solid mathematical background. It was stated: (Knight and Graehl 2005),

(Knight 2008), (Engelfriet, Lilin and Maletti 2008), that in practice, a good translation model

should have at least the following four properties: expressiveness (reordering parts of

sentences, i.e., local rotation), inclusiveness (generalizing the finite state machines by

accepting λ -moves), modularity (breaking the initial problem into smaller pieces easier to

solve) and teachability (efficient training). Unfortunately, most of the formalisms proposed

until now fail in at least one of the above criteria, but we considered that it deserves

mentioning what are the strong and weak parts of each one.

In many cases the translation is too complicated to be performed in just one step, so it is

desirable to decompose it into smaller task-oriented parts which are easier to understand, test

and train, and from which the original translation is obtained as a composition. Closure under

composition is a significant problem in MT (just think what a big success finite state

machines had, mainly because of the pipeline or noisy-channel concept: (Mohri 1997),

(Knight and Graehl 2005)), but unfortunately, such a property does not hold in general or

could not be proved for tree transducers and synchronous grammars: (Engelfriet 1975),

(Baker 1979), (Gécseg and Steinby 1984), (Gécseg and Steinby 1997), (Shieber 2004: 95). In

this paper we focus on presenting an approach, tree bimorphism, which may help in showing

such mathematical properties along with a series of results obtained this way, but we also

present some really new achievements that use operational models such as tree transducers.

On the other hand, linguists’ society believed back in the 1960s that by using a unique

“universal language”, the so-called “Interlingua”, it will be possible to make high quality

translations. Although Bar-Hillel criticized from the beginning this line of research, one may

think that a certain modification of the original concept can help us improve the mathematical

foundation of MT. At least from a philosophical point of view, it may be useful to construct

an abstract language for each two natural languages and not one for all. Using a property like

closure under composition, one can switch between each two of them more naturally without

loosing precious information about the particularities and nested structures encountered in

each natural language.

Extensively studied back in the 1970s and 1980s in the formal language community, the tree

bimorphisms can model the Interlingua concept and define tree transformations in an

algebraic way. They were used with considerable success in proving properties of various

classes of tree transformations (especially, closure under composition): (Takahashi 1972),

(Takahashi 1977), (Arnold and Dauchet 1982), (Steinby 1984), (Steinby 1986), Steinby

(1990), (Bozapalidis 1992), (Steinby and Tîrnăucă 2007). Moreover by taking the yields of

the input trees and output trees, the tree bimorphisms are transformed into word-for-word

translation devices.

Stuart M. Shieber was the first one who linked classes of tree transformations of synchronous

grammars and tree transducers via tree bimorphisms, in an attempt to extend the

mathematical framework of the former devices, where no composition results were known:

(Shieber 2004). Following this lead, a series of results was obtained: (Shieber 2006), (Maletti

2007), (Steinby and Tîrnăucă 2007), (Tîrnăucă 2007).

The paper is organized as follows. In Section 2 we describe several mechanisms that define

trees and tree transformations: tree homomorphisms, tree transducers and synchronous

grammars, while in the next two sections we explain what exactly a tree bimorphism is, how
it works, what are the most well-known types and which classes were connected until now

with synchronous grammars. We finish by presenting an example and some future work.

2. Ways to define tree transformations

In this section, we give basic definitions and notations regarding trees and tree

transformations, which will be used throughout the whole paper. Also, we present the

simplest way to define a tree transformation, i.e., as a tree homomorphism, as well as a

machine which effectively computes tree transformations, namely tree transducer. Moreover,

we briefly mention some of the main types of tree transducers applicable in modelling natural

language processes. We finish by describing the concepts of synchronous rewriting and

syntax-directed translation, firstly introduced as models of simple compilers, and lately

proposed mainly by linguistic community as an attempt to improve the translations between

natural languages (especially because of their ability to perform local rotations and describe

syntax-sensitive transformations). Moreover, we enumerate several types of well-known

synchronous grammars that can be found in literature.

2.1 Trees

The usefulness of trees and tree language theory in areas like linguistics, computer science or

formal language theory is well established and we can mention, for example, representation

of derivations in formal grammars (syntax), functional programming, machine learning,

modelling of RNA sequences, etc. Here, we briefly recall some basic notations and

definitions; good introductory books are, at least, (Gécseg and Steinby 1984), (Gécseg and

Steinby 1997), (Martín Vide, Mitrana and Păun 2004).

The trees considered are finite, their nodes are labelled by symbols, and the branches leaving

any given node have a specified order. A ranked alphabet Σ is a finite set of symbols each

of them having a given nonnegative integer arity, or rank. Note that in other works, the same

symbol may have different ranks. For any 0m ≥ , the set of m -ary symbols in Σ , i.e., all

symbols of rank m , is denoted mΣ . In examples we may write 1 1{ / , , / }k kf m f mΣ = … to

indicate that Σ consists of the symbols 1, , kf f… with the respective ranks 1, , km m… . In

addition to ranked alphabets, we use ordinary finite alphabets for labelling leaves of trees,

that we call leaf alphabets, disjoint from the ranked alphabets. As usual, if X is such an

alphabet,
*X denotes the set of all the (finite) words over X , and subsets of

*X are called

(string) languages. Moreover, λ denotes the empty word.

For any ranked alphabet Σ and leaf alphabet X , the set ()T XΣ of Σ -terms with variables

in X is the smallest set T such that 0X T∪Σ ⊆ , and 1(, ,)mf t t T… ∈ whenever

0m > , mf ∈Σ and 1, , mt t T… ∈ . Such terms are regarded as representations of labelled

trees, and we call them XΣ -trees. Any 0d X∈ ∪Σ represents a one-node tree in which the

only node is labelled with d , and 1(, ,)mf t t… is interpreted as a tree formed by adjoining

the m trees represented by 1, , mt t… to a new f -labelled root. Subsets of ()T XΣ are called

XΣ -tree languages. We may also speak simply about trees and tree languages without

specifying the alphabets. If the leaf alphabet X is empty, then XΣ -trees are called ground

XΣ -trees, and their set ()TΣ ∅ is denoted by TΣ . The symbols of rank 0 are named

constants or nullary symbols, and the leaf symbols, variables.

As the definition of the set ()T XΣ is inductive, notions related to XΣ -trees can be defined

recursively, and statements about them can be proved by tree induction. For example, an

important notion which will be used later is the yield function that extracts a word from each

tree the same way as a sentence is obtained from any of its derivation trees (a concatenated

sequence of symbols of the leaves, read from left to right). More formally, the function
* d : ()y T X XΣ → and the yield yd()t of a XΣ -tree t are defined as follows:

()yd x x= for every variable x X∈ , yd()c λ= for every constant 0c∈Σ , and

1y () () d yd yd()mt t t= … for 0m > , mf ∈Σ and 1(, ,)mt f t t= … . The yield language

of a XΣ -tree language T is the set
* yd y() { (d) }()T t t T X= ∈ ⊆ . The notions of

height and subtrees of a tree t are defined as usually, e.g.: (Gécseg and Steinby 1997: 4).

There are several classes of tree languages that are well known and wide used. We will just

mention some of them, formal definitions being found in: (Gécseg and Steinby 1984),

(Gécseg and Steinby 1997), (Knight and Graehl 2005)): the class LOC of local tree

languages, DREC of deterministically regular tree languages, REC of regular tree

languages, and ALG of context-free tree languages (also called algebraic tree languages). It

is known that any local tree language is regular, and that DREC REC ALG⊂ ⊂ (Gécseg

and Steinby 1984). Perhaps one of the most interesting and applicable connection between

tree languages and string languages is that the yield of any regular tree language is a context-

free language, and vice versa: (Gécseg and Steinby 1984), (Gécseg and Steinby 1997).

Finally, let us note that in many applications or presentations separate leaf alphabets are not

used, but a special set of constants is singled out when needed. Although this often can be

done without any loss of generality and it would simplify the exposition somewhat, leaf

alphabets are convenient in many cases (e.g., leaf alphabets coincide with the alphabets on

which natural languages are defined), and we shall use them in this work.

2.2 Tree Transformations

In the sequel,Σ , Γ and Ω are always ranked alphabets, and X , Y and Z are leaf
alphabets.

A tree transformation may be interpreted as a collection of pairs of parse (syntax) trees of

natural languages sentences (ranked alphabets may code parts of sentences, e.g., noun or verb

phrase, and leaf alphabets usual natural languages alphabets, e.g., Kanji, Spanish or Russian),

and its translation as a set of pairs of words from the two natural languages considered (just

take the yield of such trees). Formally, a tree transformation from ()T XΣ (e.g., Spanish) to

()T YΩ (e.g., English) is any relation () ()T X T Yτ Σ Ω⊆ × . The fact that (,)s t τ∈ for some

()s T XΣ∈ and ()t T YΩ∈ means that τ transforms s (a parse tree of a Spanish sentence)

into t (the parse tree of its English translation), and t is then called a transform of s . The

input alphabets of τ are Σ and X , and the output alphabets Ω and Y . The translation

defined by τ is the relation
* *() {((), ()) (,)yd yd }s t s t X Yτ τΛ = ∈ ⊆ × . All the general

definitions and properties concerning binary relations apply directly to tree transformations.

Also, if () ()T X T Zρ Σ Γ⊆ × and () ()T Z T Yτ Γ Ω⊆ × are two tree transformations such

that the output alphabets of ρ are the input alphabets of τ , then their composition is the tree

transformation

{(,) (), (), () such that (,) and (,) }s t s T X t T Y r T Z s r r tρ τ ρ τΣ Ω Γ= ∈ ∈ ∃ ∈ ∈ ∈�

from ()T XΣ to ()T YΩ . Roughly speaking, if we have a tree transformation from English to

Spanish, and one from Spanish to Romanian, by composing them we obtain one from English

to Romanian.

The composition operation is extended in a natural way to classes of tree transformations: if

C and D are classes of tree transformations, then { , }C D C Dρ τ ρ τ= ∈ ∈� � is the

class of all tree transformations that are the composition of a transformation from C and a

transformation fromD . For any classesC , D and E of tree transformations,

• - C D E⊆� means that any composition of a C -transformation and a D -

transformation is an E -transformation,

• - E C D⊆ � means that any E -transformation can be decomposed into the

composition of a C -transformation and a D -transformation, and

• - C C C⊆� means that C is closed under composition.

To familiarize the reader with the notions introduced so far, let us present a short example.

Let X be the Romanian alphabet, and Y the English one. Let us take

{V/4, N/3,S / 2, NP/1,VP/1}Σ = and {V/5, N/4,S / 2, NP/1,VP/1}Ω = . As it can be

seen in the Figure 1 bellow, S(VP(V(, , ,)), NP(N(, ,)))r V i n e I o n= is a tree of height 3

in ()T XΣ , and S(NP(N(, , ,)),VP(V(, , , ,)))e J h o n c o m e s= is a tree of height 3 in

Figure 1: An example of a Romanian-English tree transformation

()T YΩ . Then, {(,)}r eτ = is a tree transformation from ()T XΣ to ()T YΩ , i.e., e is a

transform of r . Moreover, yd() " "r Vine Ion= , yd() " "e John comes= , and hence

“John comes” is a translation (into English) of the Romanian sentence “Vine Ion”, i.e.

(yd(), yd()) ()r e τ∈Λ .

2.3 Tree Homomorphisms

One of the simplest ways to define tree transformations is by a mapping called tree

homomorphism which, based on certain rules defined for every input symbol, transforms

recursively an input tree into a (totally or not) different output tree. To do this, let us consider

1 2 3{ , , , }ξ ξ ξΞ = … a set of variables disjoint from the other alphabets introduced so far.

Moreover, let 1{ , , }m mξ ξΞ = … for each 0m ≥ . The role of these “auxiliary” variables is

to indicate an occurrence of a subtree in a tree.

Formally, a tree homomorphism, cf.: (Gécseg and Steinby 1984), (Gécseg and Steinby

1997), (Comon et all 1997), for example, : () ()T X T Yϕ Σ Ω→ is determined by a mapping

: ()X X T Yϕ Ω→ and mappings : ()m m mT Yϕ Ω ∪Ξ→Σ , for all 0m ≥ such that

mΣ ≠∅ , as follows:

• () ()Xx xϕ ϕ= for any variable x X∈ ,

• 0() ()c cϕ ϕ= for any constant 0c∈Σ , and

• 1 1() ()((), , ())m m mt f t tϕ ϕ ξ ϕ ξ ϕ= …← ← for 1(, ,)mt f t t= … (0m >).

In other words, such a mapping is processing a tree t starting from his root and going to the

leaves, by applying the rule corresponding to the current symbol: if it is a symbol f with

rank at least 1, it replaces such a symbol from the input tree by a tree ()m fϕ in which

auxiliary variables appear as leaf symbols. Next, each such iξ will be replaced by the

corresponding independently processed subtree ()itϕ of the input t (observe that this is done

inductively repeating the same procedure and using the rules of ϕ , and that each iξ uniquely

corresponds to a subtree of t). It recursively continues until we reach the symbols of t from

the leaves: because they do not have subtrees, each constant c will be replaced by a simple

tree 0 ()cϕ from the output set of trees ()T YΩ , and each leaf symbol x in X is replaced by

the corresponding tree ()X xϕ . Let us note that any tree homomorphism

: () ()T X T Yϕ Σ Ω→ defines a tree transformation {(, ()) ()}s s s T Xϕτ ϕ Σ= ∈ ; usually

one just identifies ϕτ with ϕ treating ϕ as a relation.

In the literature there are several types of tree homomorphisms depending on the restrictions

imposed on each tree ()m fϕ (0,m f≥ ∈Σ) and implicitly on auxiliary variablesξ (see the

bellow references for complete formal definitions):

• linear – if in each ()m fϕ no copy of a subtree is allowed: (Arnold and Dauchet

1982), (Gécseg and Steinby 1984), (Gécseg and Steinby 1997);

• non-deleting, or complete – if in each ()m fϕ no subtree information is lost during

the processing: (Gécseg and Steinby 1984), (Gécseg and Steinby 1997), (Arnold and

Dauchet 1982);

• strict, or ε -free – if no ()m fϕ can be reduced to an auxiliary variable iξ : (Arnold

and Dauchet 1982), (Steinby 1986), (Comon et all 1997);

• symbol-to-symbol – each leaf variable or constant is mapped to another leaf variable

or constant, respectively, and moreover each ()m fϕ is a tree of height 1 in which

possible some of the subtrees appear in a different order and possible some of the

subtrees were erased: (Comon et all 1997);

• alphabetic – if it is linear, each variable is mapped into a variable, and each ()m fϕ

is replaced by one of the subtrees iξ , or is a tree in which possible some of the

subtrees appear in a different order and possible some of the subtrees were erased:

(Bozapalidis 1992);

• quasi-alphabetic – if it is linear, non-deleting, strict, each constant is mapped to a
constant or a tree of height 1 (all leaves are symbols from the output leaf alphabet),

and each ()m fϕ is a tree of height 1 in which the subtrees are possibly reorder via a

permutation and supplementary, symbols from the output leaf alphabet may appear as

leaves: (Steinby and Tîrnăucă 2007);

• relabeling – each input tree is transformed into a tree of exactly same shape but the
label of each node may by replaced with a symbol of the same rank: (Engelfriet

1975).

Often tree homomorphisms of the form : ()T T Yϕ Σ Ω→ or :T Tϕ Σ Ω→ are considered,

and then the mapping Xϕ and any conditions concerning it can be ignored. We denote by lH,

nH, sH, stsH, aH, qH and rH the classes of all linear, non-deleting, strict, symbol-to-symbol,

alphabetic, quasi-alphabetic and strictly alphabetic tree homomorphisms, respectively.

Further subclasses of tree homomorphisms can be obtained by combining any of these

restrictions. For example, lnH is the class of all linear non-deleting tree homomorphisms.

Now let us see an example. Let {NP/4,VP/2, N/0}Σ = , {NP/6,V/3, N/2,D/0}Ω = ,

{ }X i= and {î,æ}Y = . Let us define the three tree homomorphisms

, , : () ()T X T Yϕ ψ η Σ Ω→ as follows:

- () îX iϕ = , 4 4 1 3 2(NP) NP(æ, , , , î,)ϕ ξ ξ ξ ξ= , 2 1 2(VP) V(, , î)ϕ ξ ξ= , 0 (N) N(æ,î)ϕ =

- () æX iψ = , 4 3 1 3(NP) V(, ,)ψ ξ ξ ξ= , 2 1 1 2 1 2 1(VP) NP(, , , , ,)ψ ξ ξ ξ ξ ξ ξ= , 0(N) Dψ =

- () îX iη = , 4 3(NP)η ξ= , 2 2 1(VP) N(,)ξη ξ= , 0(N) Dη = .

Then ϕ is quasi-alphabetic, ψ symbol-to-symbol (and not linear), and η alphabetic. If we

take the tree NP(,VP(N,), N,)t i i i= in ()T XΣ , then

() NP(æ, î, î, N(æ,î), î,V(N(æ, î), î, î))tϕ = , () V(D,î,D)tψ = and () Dtη = (see

Figure 2).

2.4 Tree transducers

Independently introduced in formal language theory by: (Rounds 1970) and (Thatcher 1970),

and motivated by problems in natural language processing (see: (Rounds 1970: 257), (Knight

and Graehl 2007: 3)), the tree transducer is a machine that generalizes usual finite state

automata and transducers, and effectively computes a tree transformation: given an input tree

over the input ranked and leaf alphabets, it computes an output tree over the output ranked

and leaf alphabets. Because they do not represent the core of the present exposition, we will

not give formal definitions; instead, we present in few words the two basic types of tree

transducers, top-down and bottom-up, and their main characteristics, and we just list some

other kinds of such devices. For details, see the references below.

As already mentioned, there are two main categories of tree transducers, depending on how

the input tree is being processed: the machine starts at the root and moves towards the frontier

formed by the leaves (that is why, it is called top-down or root-to-frontier tree transducer),

or it starts at the leaves and goes up to finish at the root (named bottom-up or frontier-to-

root tree transducer). Because of this way of moving, we can distinguish immediately the

two main properties of top-down tree transducers: during a computation, a subtree of the

input tree may be deleted before processing, or it can be multiplied and then processed in

different modes. By contrary, during a computation in a bottom-up tree transducer, a subtree

of the input tree cannot be deleted before processing, and it is first processed and then the

(only) result may be multiplied.

Depending on the restrictions imposed on the rules that define the processing of the input

tree, and the asymmetry between top-down and bottom-up directions, there are several types
of tree transducers, most of them models of syntax-directed semantics: total, deterministic,

linear, non-deleting, with regular look-ahead, (monadic) macro, attributed, modular (see:

(Engelfriet 1975), (Gécseg and Steinby 1984), (Gécseg and Steinby 1997: 58)), etc.

Three special models deserve maybe even a further investigation because of their strongly

linguistic motivation (machine translation): extended top-down tree transducers: (Knight

and Graehl 2005), (Knight 2008), also called transducteurs généralisés descendants: (Arnold

and Dauchet 1976), multi bottom-up tree transducers: (Fülöp, Kühnemann and Vogler

2005), (Maletti 2007) and extended multi bottom-up tree transducers: (Engelfriet, Lilin

and Maletti 2008), also called S -transducteurs ascendants generalices: (Lilin 1981). The one

proposed by Knight and Graehl was introduced as an attempt to perform very complicate

rotations (multi-level) during the translation process, but it also has the inclusiveness and the

trainability (unfortunately no closure under composition). The second one has modularity and

Figure 2: Examples of tree homomorphisms

efficiency, but fails on inclusiveness (still no result is known about their trainability). The

best candidate for model natural language translations seems to be the last one because it has

efficiency, modularity and inclusiveness, and most likely trainability.

2.5 Synchronous grammars

Synchronous grammars use the idea of synchronous rewriting: two formal grammars (used to

model the syntax of the natural language sentences, for example) work in parallel,

productions being linked by some relation and applied synchronously. This way, pairs of

recursively related words (sentences) are generated simultaneously.

The first implemented model of synchronous rewriting is the syntax-directed translator

(and its corresponding syntax-directed translation), originally introduced as a simple model

of a compiler: (Irons 1961). There are two context-free grammars (one for the input language

and one for the output language) with productions paired by a permutation via nonterminal

symbols. An example of a production in a syntax-directed translator is

1 2 3 3 2 1;S NPV onNP aNP V theNP→ , where the indexes tell us how the nonterminals are

related (e.g., the first nonterminal NP from the output part has the index 3 which means that

it is related with the third nonterminal from the input part). In other words, a syntax-directed

translation can be viewed as a three-step process one of which is a tree transformation: for a

given input sentence u , construct a parse tree for u , transform the parse tree into a tree in

the output grammar, and take the yield of the output tree as a translation for u . So, they can

easily capture syntax-sensitive transformations.

Because of the pairing between applied productions, syntax-directed translators can perform

certain types of reordering of parts of sentences that usual finite state machine designed for

word-for-word translations cannot. Hence, they were a suitable tool used with considerable

success in syntax-based machine translation and also for doing semantic interpretation as was

stated in: (Chiang 2006).

Having such a generous potential to explore, many types of syntax-directed translation

devices were introduced in the literature, from the late 1960s until present, and we should

mention at least: syntax-directed translation schemata: (Aho and Ullman 1972),

synchronous context-free grammars: (Satta and Peserico 2005), inversion transduction

grammars: (Wu 1997), multitext grammars: (Melamed 2003), tree-to-string models:

(Yamada and Knight 2001), (Galley et al 2004), hierarchical phrase-based models: (Chiang

2007), etc. A good, short, not very formal survey on most of the syntax-directed translators

along with examples and comparisons between them is: (Chiang 2006).

Unfortunately, such devices could not do every kind of local rotation that may appear

between natural languages so, more powerful types of synchronous grammars were called

for: synchronous tree substitution grammars: (Eisner 2003), (Shieber 2004), and syntax-

directed translation with extended domain of locality: (Huang, Knight and Joshi 2007).

These two formalisms allow multilevel rules, that is to say, they can generate parse trees with

very different structures and shapes. Moreover, there were proposed even more powerful

types, beyond the generative capacity of context-free rewriting, the ones that involve

discontinuous constituents: generalized multitext grammars: (Melamed, Satta and

Wellington 2004) and synchronous tree adjoining grammars: (Shieber and Schabes 1990),

(Shieber 1994).

To finish this short “trip” between synchronous formalisms, we have to remark that the

mathematical framework provided by synchronous grammars is quite poor as Shieber himself

mentioned in: (Shieber 2004: 95): ”...the bimorphism characterization of tree transducers

has led to a series of composition closure results. Similar techniques may now be applicable

to synchronous formalisms, where no composition results are known…”

3. What is a tree bimorphism?

As was stated before, a tree bimorphism is a formal algebraic model to describe classes of

tree transformations in contrast with the dynamic view of tree transducers, and used with

considerable success in proving mathematical properties (e.g., closure under composition) of

such classes. It consists of two tree homomorphisms defined on the same (regular) tree

language, which work in parallel. Moreover, by imposing suitable restrictions on the tree

language or the tree homomorphisms, one can get classes of tree bimorphisms with special

properties that may be useful for applications in linguistics as we will see in Section 4. In

what follows, we give the formal definition and a (not necessarily complete) overview of the

most well-known types of tree transformations defined in terms of tree bimorphisms.

Formally, a tree bimorphism, cf. (Arnold and Dauchet 1982), (Gécseg and Steinby 1984),

(Gécseg and Steinby 1997), for example, is a triple (, ,)B Rϕ ψ= , where ()R T ZΓ⊆ is a

regular tree language, and : () ()T Z T Xϕ Γ Σ→ and : () ()T Z T Yψ Γ Ω→ are tree

homomorphisms. The tree transformation defined by B is the relation

{((), ()) } () ()B r r r R T X T Yτ ϕ ψ Σ Ω= ∈ ⊆ × , and the translation defined by B is the

relation
* *yd yd yd() {((), ()) }B r r r R X Yτ ϕ ψ= ∈ ⊆ × (see Figure 3).

For any classes 1H and 2H of tree homomorphisms and any class R of regular tree

languages, we denote by ()1 2B H ,R,H the class of all tree bimorphisms (, ,)B Rϕ ψ=

with 1Hϕ∈ , RR∈ and 2Hψ ∈ , and by ()1 2H ,R,HB the corresponding class of tree

t

ϕϕϕϕ

ϕϕϕϕ (t) ψψψψ (t)

Figure 3: The scheme of a tree bimorphism

ψψψψ

transforms into

()R T ZΓ∈ ⊆

()T YΩ∈ ()T XΣ ∋

yd(ϕϕϕϕ (t)) yd(ψψψψ (t)) *X ∋
*Y∈ is translated into

transformations. For example, ()B lnH,LOC,rH is the class of tree bimorphisms in which

the first tree homomorphism component is linear and non-deleting, the second is a relabeling

and the tree language is local, and ()lnH,LOC,rHB is the class of all the tree

transformations defined by such tree bimorphisms.

We finish this section by browsing from the literature some classes of tree transformations

defined by tree bimorphisms. The exposition is informal but requires additional information

about term algebra and formal language theory (see: (Gécseg and Steinby 1984) and the

references therein). Notice that in all cases the tree bimorphism approach was essential in

proving properties like closure under composition or preservation of regular tree languages!

One of these classes, called primitive transformations and denoted by PT : (Takahashi
1972), is an extension from words to trees of the length-preserving finite state transductions

introduced by: (Elgot and Mezei 1965), and is characterized in terms of tree bimorphisms as a

relation between two projective images of one recognizable set. Further generalizations are

presented in the same paper: the description in terms of bimorphisms of a more general class

of tree transformations, namely primitive transformation with permutation (PTP), and
the characterization of regular sets in terms of inverse images by projections. Both classes,

PT and PTP , are closed under composition.

To extend Nivat’s results about rational transductions, another class of tree transformations

called rational relations of binary trees (a binary tree is a tree with all interior nodes

labelled by two-rank symbols) is introduced in: (Takahashi 1977). They are characterized by

using recognizable sets of binary trees and two linear non-deleting tree homomorphisms -

called tree-morphisms there. The main results presented are: the class of rational relations is

closed under composition, and the recognizable sets of binary trees are preserved not only by

tree-morphisms but also by their inverses.

Following the same line of research, (Arnold and Dauchet 1976) presented the class BI of

tree bimorphisms where the two tree homomorphisms are linear, non-deleting and strict, and

the tree language regular. Although this class is not closed under composition, the new class

BI BI� is. Other classes of tree transformations are introduced and explained in: (Arnold

and Dauchet 1976), (Arnold and Dauchet 1982), together with their connection with BI . In

particular, one of these classes is TT which contains usual tree transformations defined by a
tree transducer and their inverses. Furthermore, it is characterized in terms of tree

bimorphisms, i.e., TT = BI BI� , and hence it is easier to manipulate. Moreover, TT is
closed under composition and preserves regular tree languages.

In: (Steinby 1986) the author offers a more directly algebraic approach to tree

transformations by introducing Σ -rational tree transformations (-RTTsΣ) and Σ -

algebraic tree transformations (-ATTsΣ). The -RTTsΣ are rational subsets of the direct

product of two finitely generated term algebras ()T XΣ and ()T YΣ . Their class is denoted

Rat (,)X YΣ and resembles Nivat’s transductions in many ways: -RTTsΣ are defined by

certain tree bimorphisms (called Σ -rational tree bimorphisms); they preserve the

recognizability and the rationality of tree languages; the translations defined by -RTTsΣ are

exactly the rational transductions; the converse of a -RTTΣ is Σ -rational, and so is the

composition of any two of them. Also, -RTTsΣ are different from rational transductions,

because for example, they are always locally finite and their class is closed under

intersection. Corresponding to algebraic transductions: (Mezei and Wright 1967), -ATTsΣ

are defined as the algebraic subsets of the direct product of two finitely generated term

algebras ()T XΣ and ()T YΣ , and their class is denoted by Alg (,)X YΣ . In the

representation of -ATTsΣ by means of tree bimorphisms, rational tree languages are now

replaced by regular tree languages. Using this, many results for -RTTsΣ are extended to

-ATTsΣ . In particular, contrary to the case of algebraic transductions, Alg (,)X YΣ is

closed both under composition and under intersection. The translations defined by -ATTsΣ

are exactly the algebraic transductions.

Moreover in: (Steinby 1984), it is shown that many basic problems, undecidable for rational

transductions, are decidable for -RTTsΣ and -ATTsΣ when these tree transformations are

defined by tree bimorphisms. In particular, the equivalence problem is decidable for them.

Because of the close connection with the rational and algebraic transductions, they could

model the correction transformations required by local and structural errors in tree

representations of patterns: (Steinby 1990). To conclude, we mention that -RTTsΣ and

-ATTsΣ have an obvious limitation: the input trees and their transforms are always over the

same ranked alphabet.

The class of alphabetic tree relations: (Bozapalidis 1992), denoted by Alph , is the class of

tree transformations defined by tree bimhorphisms where the two tree components are

alphabetic tree homomorphisms (called “démarquages linéairs” in: (Arnold and Dauchet

1982)), and the tree language is regular (or local). It was shown that Alph is closed under

composition and inverses, preserves regular and algebraic tree languages, and contains most

of the classical tree transformations (top-catenation, branches, subtrees, union and

intersection with a regular tree language, etc.), being so far the best candidate for building the

AFL theory for trees.

In: (Steinby and Tîrnăucă 2007), the notion of quasi-alphabetic tree homomorphism and the
new class of quasi-alphabetic tree bimorphisms are introduced. This class, denoted by

B(qH, LOC, qH) , consists of all tree bimorphisms in which the tree language is local and

the two tree homomorphism components are quasi-alphabetic. It is closed under composition

and inverses, and preserves regular tree languages.

The connection between some of the classes introduced above is immediate. Since rational

tree languages are regular and morphisms of term algebras are special linear non-deleting

strict homomorphisms, the class Rat (,)X YΣ forms a proper subclass of BI ; a natural

generalization of the rational relations of Takahashi also yields the class BI . The classes PT

and PTP are incomparable with Rat (,)X YΣ since primitive transformations may relabel

nodes and permute subtrees. We finish by mentioning that several classes of tree

transformations described in terms of tree bimorphisms are similar with the ones computed

by tree transducers. For example, every -RTTΣ can be defined by a linear bottom-up tree

transducer. Another nice result says that the tree transformations computed by bottom-up tree
transducers are equivalent with the ones defined by tree bimorphisms where the first

component is a linear non-deleting strict tree homomorphism: (Comon et all 1997),

(Engelfriet 1975). On the other hand, alphabetic tree relations are incomparable with the

classes of tree transformations defined by top-down and bottom-up tree transducers:

(Bozapalids 1992).

4. What can we obtain with the help of tree bimorphisms?

This section mainly presents closure/no closure under composition results of various types of

classes of tree transformations defined by synchronous grammars and tree transducers that

were obtained using the tree bimorphism formalism. With such a wide range of models, there

still are many others to explore. The exposition is extremely brief; for details and complete

proofs see the references below.

In: (Shieber 2004), it was shown that synchronous tree substitution grammars are as powerful

as B(lnH, REC, lnH) , denoted there B(LC, LC) , i.e., with tree bimorphisms in which

the two tree homomorphism are linear and non-deleting, and the tree language regular. On the

other hand in: (Maletti 2007), B(lnH, REC, lnH) are proved to be equivalent with linear

and non-deleting extended tree transducers of (Knight and Graehl 2005). Using the result in:

(Maletti et al 2007) that linear non-deleting extended tree transducers are not closed under

composition and the observations in: (Arnold and Dauchet 1982), we get immediately that

linear non-deleting synchronous tree substitution grammars and B(lnH, REC, lnH) are not

closed under composition as well.

In: (Shieber 2006), we find out that synchronous tree adjoining grammars are equal in power

with linear non-deleting embedded tree transducers which usually are called linear non-

deleting monadic macro tree transducers (see Section 2.4 for further references about macro

tree transducers). Following the same idea as in: (Shieber 2004), it is straightforward to check

that synchronous tree adjoining grammars are exactly the same as B(lnsH, REC, lnsH) ,

denoted by B(ELC, ELC) there, about which we know from: (Arnold and Dauchet 1976),

(Arnold and Dauchet 1982) that it is not closed under composition.

In: (Steinby and Tîrnăucă 2007) and (Tîrnăucă 2007), it is shown that the translations defined

by the quasi-alphabetic tree bimorphisms B(qH, LOC, qH) are effectively equal to the

ones defined by syntax-directed translation schemata of: (Aho and Ullman 1972) and by

synchronous context-free grammars of: (Satta and Peserico 2005), respectively.

5. An extended example

In this section, we show a very simple example of how to construct a syntax-directed

translation schema, how the closure under composition of classes of tree transformations may

help in improving the quality of translations, and also how a concrete tree bimorphism looks

like. For the sake of simplicity, in the construction of the following parse trees, the symbols

will not have a single rank (e.g., V may have arity 3 or 5 depending how many branches are

leaving the node labelled with V), and hence we omit writing their rankings.

To begin with, let us consider the following ranked and leaf alphabets:

c part pers{S, NP, VP, V, N, ADJ, V , V , V }Σ = Ω = Γ = , X is the Romanian alphabet,

Y the English one and Z the Spanish. Let us take in English the sentence “I have painted

walls”. There are two parse trees 1e and 2e in ()T YΩ , as we can see in Figure 4, depending

on how “painted” is interpreted: as an adjective or verb participle. When translated into

Spanish, the two possible interpretations of this particular sentence produce the following

Spanish sentences: “Tengo paredes pintadas” (with the parse tree 1s in ()T ZΓ corresponding

to 1e) and “He pintado paredes” (with the parse tree 2s in ()T ZΓ corresponding to 2e). In a

similar manner, if we consider the Romanian into English translation, we obtain two pairs of

Figure 4: The two English-Spanish and Romanian-English tree transformations

parse trees 1 1(,)r e and 2 2(,)r e corresponding to the translations of “Am pereţi văruiţi” and

“Am văruit pereţi” into “I have painted walls” (see again Figure 4).

A syntax-directed translation schema 1T that generates 1 1(,)e s and 2 2(,)e s contains the

rules

1 2 1 2 1 2 1 2

1 1 1 2 2 1

1 2 1 2 1 2 1 2

; ;

; ;

; ;

; .; .

; . ;

; ; ,

c per part per part

c c

per

part

S NP VP NP VP V V V V V

NP N N NP ADJ N N ADJ

VP V NP V NP VP V NP V NP

N I N walls paredes

ADJ painted pintadas V have He

V have Tengo V painted pintado

λ

→ →

→ →

→ →

→ →

→ →

→ →

and a syntax-directed translation schema 2T produces 1 1(,)r e and 2 2(,)r e by the rules

1 2 1 2 1 2 1 2

1 1 1 2 2 1

1 2 1 2 1 2 1 2

; ;

; ;

; ;

; ; .

; . ;

; ;

c per part per part

c c

per

part

S NP VP NP VP V V V V V

NP N N NP ADJ N N ADJ

VP V NP V NP VP V NP V NP

N I N pereţi walls

ADJ văruiţi painted V Am have

V Am have V văruit painted

λ

→ →

→ →

→ →

→ →

→ →

→ →

Now, let us construct a (quasi-alphabetic) tree bimorphism that defines the tree

transformation 1 1{(,)}e s (via a renaming of the symbols in order to get unique ranks). To do

this, we can take 1 2 3 4 5 6 7 8{ / 2, /1, / 2, / 0, / 0, / 2, / 0, / 0}p p p p p p p p∆ = and the

regular (in fact, local) tree language 1 2 4 3 5 6 7 8{ ((), (,((,)))}R p p p p p p p p T∆= ⊆ (see

Figure 5).

We consider the input ranked alphabet

{ADJ/7, N/5,V/4,S/2,VP/2, VP/2, N/1, NP/1}Θ = , and the output ranked alphabet

{ADJ/8,N/7,V/5,S/2,VP/2,VP/2, N/1,NP/1}Ψ = . The input and output leaf alphabets

are Y (English) and { }Z λ∪ (Spanish). If we define two (quasi-alphabetic) tree

homomorphisms : ()T T Yϕ ∆ Θ→ and : ()T T Zψ ∆ Φ→ by

Figure 5: A tree in T∆

2 1 1 2 2 1 1 2

1 2 1 1 2 1

2 3 1 2 2 3 1 2

0 4 0 4

0 5 0 5

2 6 1 2 2 6 2 1

0 7

() (,) () (,)

() () () ()

() (,) () (,)

() () () ()

() (, , ,) () (, , , ,)

() (,) () (,)

() (, , , , ,

p S p S

p NP p NP

p VP p VP

p N I p N

p V h a v e p V T e n g o

p VP p VP

p ADJ p a i n t e

ϕ ζ ζ ψ ζ ζ

ϕ ζ ψ ζ

ϕ ζ ζ ψ ζ ζ

ϕ ψ λ

ϕ ψ

ϕ ζ ζ ψ ζ ζ

ϕ

= =

= =

= =

= =

= =

= =

= 0 7

0 8 0 8

,) () (, , , , , , ,)

() (, , , ,) () (, , , , , ,),

d p ADJ p i n t a d a s

p N w a l l s p N p a r e d e s

ψ

ϕ ψ

=

= =

it is easy to see that 1 1{(,)}B e sτ = (the construction is in : (Steinby and Tîrnăucă 2007)) .

Because of the closure under composition of such tree transformations, we can get a direct

and correct translation from Romanian to Spanish. We obtain only the pairs 1 1(,)r s and

2 2(,)r s , and hence the translations “Am pereţi văruiţi.” into “Tengo paredes pintadas.”, and

“Am văruit pereţi” into “He pintado paredes”. To conclude, note that wrong translations like

(“Am pereţi văruiţi.”, “He pintado paredes”) are eliminated because the closure refers to trees

and not to their yields.

6. Conclusions and future work

We believe that the results presented in the previous sections may deserve some further

investigation. From a theoretical point of view, one can try to prove other (closure) properties

that may improve the translation process, e.g., intersection and union, preservation of

regularity of tree languages. Also from a practical point of view, it may be interesting to

implement the connections presented above, and compare the results with other systems

developed so far, or to see what other applicable synchronous formalism can be described in

terms of tree bimorphisms.

7. Acknowledgements

This work was supported by the scholarship 2007BRDI/06-11 provided by Rovira i Virgili

University. Also, I am very grateful to Andreas Maletti, Gemma Bel Enguix, Alexander

Perekrestenko and my beloved wife Cristina Tîrnăucă for fruitful discussions.

8. Bibliography

Aho, Alfred V. and Jeffrey D. Ullman (1972). The theory of parsing, translation, and compiling,

Volume I: Parsing. New Jersey: Prentice Hall Professional Technical Reference.

Arnold, André and Max Dauchet (1976). “Bi-transductions de forêts”. In: S. Michaelson and Robin

Milner, eds., Third International Colloquium on Automata, Languages and Programming, University
of Edinburgh, July 20-23, 1976. Edinburgh: Edinburgh University Press, pp. 74–86.

Arnold, André and Max Dauchet (1982). “Morphismes et bimorphismes d’arbres”, Theoretical
Computer Science 20: 33–93.

Baker, Brenda S. (1979). “Composition of top-down and bottom-up tree transductions”, Information

and Control 41(2): 186–213.

Bozapalidis, Simeon (1992). “Alphabetic tree relations”, Theoretical Computer Science 99(2): 177–

211.

Brown, Peter F., Stephen A. Della Pietra, Vincent J. Della Pietra and Robert L. Mercer (1993). “The
mathematics of statistical machine translation: Parameter estimation”, Computational Linguistics
19(2): 263–312.

Chiang, David (2006). “An introduction to synchronous grammars”. Manuscript. URL:

http://www.isi.edu/~chiang/papers/synchtut.pdf.

Chiang, David (2007). “Hierarchical phrase-based translation”, Computational Linguistics 33(2):201–
228.

Comon, Hubert, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Sophie Tison and
Marc Tommasi (1997). Tree automata techniques and applications. URL: http://www.grappa.univ-

lille3.fr/tata.

Eisner, Jason (2003). “Learning non-isomorphic tree mappings for machine translation”. In:

Proceedings of the 41st Annual Meeting on Association for Computational Linguistics - 2, Sapporo,
Japan, July 07 - 12, 2003, Morristown: Association of Computational Linguistics, pp. 205-208.

Elgot, Calvin C. and Jorge E. Mezei (1965). “On relations defined by generalized finite automata”,
IBM Journal of Research and Development 9: 47-68.

Engelfriet, Joost (1975). “Bottom-up and top-down tree transformations – a comparison”,

Mathematical Systems Theory 9(3): 198–231.

Engelfriet, Joost, Eric Lilin and Andreas Maletti (2008). “Extended multi bottom-up tree transducers”.

Manuscript. URL: http://wwwtcs.inf.tu-dresden.de/~maletti/pub/engmal08.pdf.

Fülöp, Zoltán, Armin Kühnemann and Heiko Vogler (2005). “Linear deterministic multi bottom-up
tree transducers”, Theoretical Computer Science 347 (1-2): 276-287.

Galley, Michel, Mark Hopkins, Kevin Knight, and Daniel Marcu (2004). “What's in a translation
rule?” In: HLT-NAACL 2004, Human Language Technology Conference of the North American

Chapter of the Association for Computational Linguistics, May 2-7, Boston, MA, pp. 273-280.

Gécseg, Ferencz and Magnus Steinby (1984). Tree automata. Budapest: Akadémiai Kiadó.

Gécseg, Ferencz and Magnus Steinby (1997). “Tree languages”. In: Arto Salomaa and Grzegorz

Rozenberg, eds., Handbook of Formal Languages: Volume 3. Beyond Words. Berlin: Springer, pp. 1–
68.

Huang, Liang, Kevin Knight and Aravind Joshi (2006). “Statistical syntax-directed translation with
extended domain of locality”. In: Proceedings of the AMTA 2006, Boston, Cambridge, Massachusetts,

August 8-12, 2006. URL: http://www.mt-archive.info/AMTA-2006-Huang.pdf.

Irons, E (1961). “A syntax directed compiler for ALGOL 60”, Communications of the ACM 4(1): 51–
55.

Knight, Kevin (2008). “Capturing practical natural language transformations”. Manuscript. URL:
http://www.isi.edu/natural-language/mt/capturing.pdf.

Knight, Kevin and Yaser Al-Onaizan (1998). “Translation with finite-state devices”. In: David

Farwell, Laurie Gerber and Eduard H. Hovy, eds., Machine Translation and the Information Soup,
Third Conference of the Association for Machine Translation in the Americas, AMTA ’98, Langhorne,
PA, USA, October 28-31, 1998. Proceedings, vol. 1529 of LNCS. London: Springer-Verlag, pp. 421–

437.

Knight, Kevin and Jonathan Graehl (2005). “An overview of probabilistic tree transducers for natural
language processing”. In: Alexander F. Gelbukh, ed., Computational Linguistics and Intelligent Text
Processing 6th International Conference, CICLing 2005, Mexico City, Mexico, February 13-19, 2005,

Proceedings, vol. 3406 of LNCS. Berlin: Springer-Verlag, pp. 1–24.

Lilin, Eric (1981). “Propriétés de clôture d’une extension de transducteurs d’arbres déterministes”. In:
Egidio Astesiano and Corrado Böhm eds., CAAP ‘81, Trees in Algebra and Programming, 6th

Colloquium, Genoa, Italy, March 5-7, 1981, Proceedings. Vol. 112 of LNCS. Berlin: Springer, pp:
280-289.

Maletti, Andreas (2007). “Compositions of extended top-down tree transducers”. In: Remco Loos,
Szilárd Z. Fazekas and Carlos Martín Vide, eds., Proceedings of the 1st International Conference on

Language and Automata Theory and Applications, LATA 2007, March 29-April 4, 2007, vol. 35/07 of
GRLMC Reports. Tarragona: Universitat Rovira i Virgili, pp. 379–390.

Maletti, Andreas, Jonathan Graehl, Mark Hopkins and Kevin Knight (2007). “On extended tree
transducers”. Submitted to SIAM Journal on Computing.

Martín Vide, Carlos, Victor Mitrana and Gheorghe Păun (2004). Formal languages and applications,
Studies in fuzziness and soft computing, Vol. 148. Berlin: Springer.

Melamed, I. Dan (2003). “Multitext grammars and synchronous parsers”. In: HLT-NAACL 2003,

Proceedings of the 2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology - Volume 1, Edmonton, Canada, May 27
- June 01, 2003. Morristown: Association for Computational Linguistics, pp. 79–86.

Melamed, I. Dan, Giorgio Satta and Benjamin Wellington (2004). “Generalized multitext grammars”.

In: ACL-04, 42nd Annual Meeting on Association for Computational Linguistics, Proceedings of the
Conference, 21 - 26 July, 2004, Barcelona, Spain. Morristown: Association for Computational
Linguistics, pp. 563–569.

Mezei, J. and Jesse B. Wright (1967). “Algebraic automata and context-free sets”, Information and

Control 11(1-2): 3–29.

Mohri, Mehryar (1997). “Finite-state transducers in language and speech processing”, Computational
Linguistics 23(2): 269–311.

Rounds, William C. (1970). “Mappings and grammars on trees”. Mathematical Systems Theory 4(3):
257-287.

Satta, Girogio and Enoch Peserico (2005). “Some computational complexity results for synchronous
context-free grammars”. In: HLT/EMNLP 2005, Human Language Technology Conference and

Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference,
6-8 October 2005, Vancouver, British Columbia, Canada. Morristown: Association for

Computational Linguistics, pp. 803–810.

Shieber, Stuart M. (1994). “Restricting the weak generative capacity of synchronous tree-adjoining
grammars”, Computational Intelligence 10(4): 371-385.

Shieber, Stuart M. (2004). “Synchronous grammars as tree transducers”. In: Proceedings of the

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms, May
20-22, 2004, Vancouver, BC, CA, 2004, pp. 88–95.

Shieber, Stuart M. (2006). “Unifying synchronous tree-adjoining grammars and tree transducers via
bimorphisms”. In: EACL 2006, 11st Conference of the European Chapter of the Association for

Computational Linguistics, Proceedings of the Conference, April 3-7, 2006, Trento, Italy. Association
for Computer Linguistics, pp. 377-384.

Shieber, Stuart M. and Yves Schabes (1990). “Generation and synchronous tree-adjoining grammars”.
In: COLING 1990, 13th International Conference on Computational Linguistics, August 20-25, 1990,

University of Helsinki, Proceedings, Volume 3, pp. 253-258.

Steinby, Magnus (1984). “Some decidable properties of Σ -rational and Σ -algebraic tree
transformations”, Annales Universitatis Turkuensis, Ser. A I 186: 102-109.

Steinby, Magnus (1986). “On certain algebraically defined tree transformations”. In: János
Demetrovics, Lothar Budach and Arto Salomaa, eds., Algebra, Combinatorics and Logic in Computer

Science, Vol. I, II, September 12-16, 1983, Györ, Hungary, vol. 42 of Colloquia Mathematica
Societatis János Bolyai. Amsterdam: North Holland, pp. 745–764.

Steinby, Magnus (1990). “A formal theory of errors in tree representations of patterns”, Journal of
Information Processing and Cybernetics, EIK 26 (1/2): 19-32.

Steinby, Magnus and Cătălin I. Tîrnăucă (2007). “Syntax-directed translations and quasi-alphabetic
tree bimorphisms”. In Jan Holub and Jan Zdárek, eds,, Implementation and Application of Automata,

12th International Conference, CIAA 2007, Prague, Czech Republic, July 16-18, 2007, Revised
Selected Papers. Berlin: Springer-Verlag, pp. 265–276.

Takahashi, Masako (1972). “Primitive transformations of regular sets and recognizable sets”. In:
Maurice Nivat, ed., Automata, Languages and Programming, Colloquium, Paris, France, July 3-7,

1972. Amsterdam: North Holland, pp. 475-480.

Takahashi, Masako (1977). “Rational relations of binary trees”. In: Arto Salomaa and Magnus
Steinby, eds., Automata, Languages and Programming Fourth Colloquium, University of Turku,
Finland, July 18-22, vol. 52 of LNCS. Berlin Heidelberg: Springer-Verlag, pp. 524–538.

Thatcher, James W. (1970). “Generalized2 sequential machine maps”, Journal of Computer and

System Sciences 4(4): 339–367.

Tîrnăucă, Cătălin I. (2007). “Synchronous context-free grammars by means of tree bimorphisms”. In:
Gemma Bel Enguix and Maria Dolores Jiménez Lopez, eds., Proceedings of the 1st International
Workshop on Non-Classical Formal Languages in Linguistics (ForLing 2007), August 31, 2007,

Budapest, Hungary, vol. 36/07 of GRLMC Reports. Tarragona: Universitat Rovira i Virgili, pp. 97–
107.

Yamada, Kenji and Kevin Knight (2001). “A syntax-based statistical translation model”. In:
Proceedings of the 39th Annual Meeting on Association for Computational Linguistics, Toulouse,

France, July 06 - 11, 2001. Morristown: Asociation of Computational Linguistics, pp. 523-530.

Wu, Dekai (1997). “Stochastic inversion transduction grammars and bilingual parsing of parallel
corpora”, Computational Linguistics 23(3): 377–403.

