Ranking | User | Team | Organisation | SAS | Exact Match |
1 | CommodoreEU | TU Graz Data Team | Graz University of Technology | 0.9841 (1) | 0.8703 (2) |
2 | nirvanatear | Team nirvanatear (Jonathan Zhou) |
| 0.9801 (2) | 0.8782 (1) |
3 | marcelo.moreno | LenguajeNatural.AI | LenguajeNatural.AI | 0.9787 (3) | 0.8164 (4) |
4 | yemen2016 | LaithTeam | Copenhagen University, Denmark | 0.9756 (4) | 0.8084 (5) |
5 | michaelibrahim | CUFE | Cairo University | 0.9755 (5) | 0.8224 (3) |
6 | aukbc | VSP_CLRG Team | AU-KBC Research Centre, Chennai, India | 0.9607 (6) | 0.7166 (7) |
7 | rr2000 | Semantists | Institute for Infocomm Research, Singapore | 0.9555 (7) | 0.7525 (6) |
8 | neelesh310 | OraGenAIOrganisation | Oracle | 0.9219 (8) | 0.0898 (9) |
9 | Pulkit_Chatwal | RGIPT – India |
| 0.8987 (9) | 0.0619 (10) |
10 | Medha_Jeenoor | PresiUniv | Department of Computer Science and Engineering, Presidency University, Bangalore | 0.7520 (10) | 0.0140 (11) |
11 | Yanco | Baseline | LLI-UAM | 0.7244 (11) | 0.2515 (8) |
Ranking |
User |
Team |
Organisation |
SAS |
Exact Match |
1 |
nirvanatear |
Team nirvanatear (Jonathan Zhou) |
|
0.9779 (1) |
0.8798 (1) |
2 |
CommodoreEU |
TU Graz Data Team |
Graz University of Technology |
0.9732 (2) |
0.8637 (2) |
3 |
sarang |
Sarang |
National Institute of Technology ,Trichy, India |
0.9674 (3) |
0.7014 (7) |
4 |
aukbc |
VSP_CLRG Team |
AU-KBC Research Centre, Chennai, India |
0.9604 (4) |
0.7214 (6) |
5 |
rr2000 |
Semantists |
Institute for Infocomm Research, Singapore |
0.9598 (5) |
0.7435 (5) |
6 |
yemen2016 |
LaithTeam |
Copenhagen University, Denmark |
0.9598 (6) |
0.7615 (4) |
7 |
michaelibrahim |
CUFE |
Cairo University |
0.9595 (7) |
0.8277 (3) |
8 |
neelesh310 |
OraGenAIOrganisation |
Oracle |
0.9244 (8) |
0.3527 (9) |
9 |
Pulkit_Chatwal |
RGIPT – India |
|
0.9086 (9) |
0.5110 (8) |
10 |
Medha_Jeenoor |
PresiUniv |
Department of Computer Science and Engineering, Presidency University, Bangalore |
0.8241 (10) |
0.2244 (11) |
11 |
Yanco |
Baseline |
LLI-UAM |
0.7373 (11) |
0.3287 (10) |
Financial analysis needs factual data and an explanation of the variability of these data. Data state facts but need more knowledge regarding how these facts materialised. Furthermore, understanding causality is crucial in studying decision-making processes.
The Financial Document Causality Detection Task aims to develop an ability to explain, from external sources, why a transformation occurs in the financial landscape as a preamble to generating accurate and meaningful financial narrative summaries. Its goal is to evaluate which events or chain of events can cause a financial object to be modified or an event to occur, regarding a given context.
Participants will need to provide the cause or effect within given segments. There are 2 subtasks: one in English and one in Spanish. The English dataset has been sourced from various 2017 UK financial annual reports from the corpus made available by UCREL in Lancaster University. The Spanish dataset has been extracted from a corpus of Spanish financial annual reports from 2014 to 2018. These datasets are comparable in both languages to allow for testing of multilingual models.
Traditionally, the extraction of cause-effect relationships has been extractive, as seen in the previous editions of FinCausal. In 2025, it is presented as a generative AI task, where questions about causes or effects are posed, and the system responses are evaluated using exact matching and similarity metrics.
Causality
A causal relationship involves stating a cause and its effect, meaning that, according to the text, two events are related, and one triggers the other. In summary, there are two types of causes:
We are interested in both types of causes because they are useful for studying and understanding decision-making in a company. Additionally, in the second type, causes that lead to quantifiable effects are highly relevant for financial analysis.
Both types of causes can be agents or facts. Effects can be quantified or not, but they must not be expectations, hypotheses, or future projections.
The dataset will consist of three parts: context, question, and answer:
Here are some examples:
Context |
Question |
Answer |
In October 2016, we announced an implementation agreement to sell ACR to two Shenzhen government sponsored investment companies, subject to regulatory and other approvals. This approval process remains ongoing and, as a result, we did not value ACR on an imminent sales basis as at 31 March 2017 . |
Why was ACR not valued on an imminent sales basis as of March 31, 2017? |
This approval process remains ongoing |
The Board has resolved that, in view of the size of the Board, it is most appropriate for matters of remuneration to be dealt with by the Board as a whole. |
What was the implication of the Board’s size? |
it is most appropriate for matters of remuneration to be dealt with by the Board as a whole |
Table 1: Sample for English
Context |
Question |
Answer |
Es cierto que se ha registrado una desaceleración de la actividad en la segunda parte de 2015 respecto a lo observado en el primer semestre debido a la ralentización de la demanda mundial, el agotamiento de algunos factores cíclicos y el aumento de la incertidumbre, en parte ligada al ciclo electoral español, pero las previsiones indican que se alcanzará un incremento del PIB de alrededor de un 2,7% para 2016. |
¿A qué se atribuye que se haya registrado una desaceleración de la actividad en la segunda parte de 2015 respecto al primer semestre? |
a la ralentización de la demanda mundial, el agotamiento de algunos factores cíclicos y el aumento de la incertidumbre, en parte ligada al ciclo electoral español |
En este ejercicio, se han consolidado las ventas a empresas de grandes flotas de vehículos, por lo que se ha creado un departamento especializado en esta operativa y se ha iniciado el proyecto de internacionalización de renting con acuerdos con otros operadores para dar servicio a clientes que se expandan fuera del territorio. |
¿Qué consecuencias ha tenido la consolidación de ventas a empresas de grandes flotas de vehículos en este ejercicio? |
se ha creado un departamento especializado en esta operativa y se ha iniciado el proyecto de internacionalización de renting con acuerdos con otros operadores para dar servicio a clientes que se expandan fuera del territorio |
Table 2: Sample for Spanish
For both subtasks, participants can use any method they see fit (regex, corpus linguistics, entity relationship models, deep learning methods) to provide the cause or the effect questioned.
For any questions, please contact the organisers at fincausal@gmail.com