Financial Document Causality Detection Task (FinCausal 2026)

Introduction

The FinCausal 2026 shared task is a key component of the 7th Financial Narrative Processing (FNP) workshop, organized within the framework of the LREC conference, held in Palma de Mallorca on 16 May 2026

Financial analysis depends on factual data and explanations of data variability. While data present facts, they do not reveal why these facts occurred. It’s important to examine the narrative behind the data presentation. Recognising causality is essential for understanding decision-making processes.
The Financial Document Causality Detection Task aims to develop the ability to explain, from external sources, why a transformation occurs in the financial landscape as a preamble to generating accurate and meaningful financial narrative summaries. Its goal is to evaluate which events or chains of events can cause a financial object to be modified or an event to occur, regarding a given context.
Participants will need to identify the cause or effect within the given segments. There are two subtasks: one in English and one in Spanish. The English dataset has been sourced from various 2017 UK financial annual reports from the corpus provided by UCREL at Lancaster University and from the English version of the 2018 FinT-esp corpus. The Spanish dataset has been extracted from a corpus of Spanish financial annual reports from 2014 to 2018. These datasets are comparable across both languages to facilitate testing of multilingual models. For the 2026 edition, the previous dataset has been expanded with 500 examples in each language, including complex cause-and-effect structures.
Traditionally, the extraction of cause-effect relationships has been extractive, as seen in the first editions of FinCausal. In 2025, it was presented as a generative AI task, in which abstractive questions about causes or effects are posed, and the system’s responses are evaluated using exact-matching and similarity metrics.
In FinCausal 2026, we have introduced more features and innovations:

  • Complete review of the previous datasets, removing ambiguous or very simple cases. More than 500 new fragments with complex relationships have been added (such as a causal chain of three or more elements).
  • Rephrasing of the abstractive questions in 10% of the cases, to create a dataset that requires more advanced reasoning and is less dependent on similarity to the original text.
  • Random partitioning of the training and test sets, based on the new 2026 dataset. In this way, the innovations are distributed evenly.
  • Introduction of an LLM-as-a-judge–based evaluation metric, which scores system responses on a 1–5 scale according to their adequacy. This metric replaces the previous SAS + Exact Match evaluation scheme and aligns FinCausal with current practices adopted in recent shared tasks and competitions.

Causality

A causal relationship involves stating a cause and its effect, meaning that, according to the text, two events are related, and one (the cause) triggers the other (the effect). There are two types of causes:

  1. Justification of a statement.
    For example: «This is my final report since I have been succeeded as President of the Commission as of January 24, 2019.»
  2. The reason for explaining a result.
    For example: «In Spain, revenue grew by 10.8% to 224.9 million euros, due to an increase in cement volume accompanied by a more moderate price increase.»

In previous editions, we examined both types of causes because they are useful for studying and understanding decision-making in a company. In the current edition, we mainly focus on the second type (EXPLANATION), especially on causes that result in measurable effects, which are highly relevant for financial analysis.
Causes can be agents or facts. Effects can be quantified or not, but they are always events, not expectations, hypotheses, or future projections.
Finally, the task concentrates on text-internal causality (how the document encodes it), not on the truth or validity of the statements.

Dataset

The dataset will consist of three parts: context, question, and answer:

  • Context: The original paragraph from the annual reports.
  • Question: It is formulated to find the other part of the relationship, either the cause or the effect. It will always be abstractive, meaning it should reflect the content of the cause or effect being asked about, but not exactly match the provided context. For example:
    • Why did X (effect) happen?
    • What is the consequence (effect) of X (cause)?
  • Answer: The response will be the cause or effect previously asked about, taken verbatim from the text, making it extractive.

Here are some examples:

English Subtask

context question answer
The development of the Group’s own voice assistant commenced in 2018. This will enhance apps thanks to the incorporation of vocal interface and will also entail the creation of new products that will change how customers interact with  services, such as TV. What event will enable the enhancement of apps using vocal interface and the creation of new products bound to change customer interaction? That event will enable the enhancement of apps using vocal interface and the creation of new products bound to change customer interaction?
Due to the greater return, combined with the maintained financial stability, we will be able to sustain an attractive dividend policy for our shareholders (>50% cash payout for the entire period). What enables the sustainment of an attractive dividend policy for the shareholders? The greater return, combined with the maintained financial stability

Table 1: Sample for English

Spanish Subtask

contextquestionanswer
El importe de las obligaciones cubiertas con pólizas de seguros macheadas a 31 de diciembre de 2016 ha sido de 839.083 miles de euros (832.485 miles de euros a 31 de diciembre de 2015), por lo que en un 97,32% de sus compromisos (96,93% a 31 de diciembre de 2015), el grupo no tiene riesgo de supervivencia (tablas) ni de rentabilidad (tipo de interés). Por lo tanto la evolución de los tipos de interés durante el ejercicio no ha tenido impacto en la situación financiera de la entidad.¿Cuál es la causa de que la evolución de los tipos de interés durante el ejercicio no haya tenido impacto en la situación financiera de la entidad?El importe de las obligaciones cubiertas con pólizas de seguros macheadas a 31 de diciembre de 2016 ha sido de 839.083 miles de euros (832.485 miles de euros a 31 de diciembre de 2015), por lo que en un 97,32% de sus compromisos (96,93% a 31 de diciembre de 2015), el grupo no tiene riesgo de supervivencia (tablas) ni de rentabilidad (tipo de interés)

Por último, los presentes estados financieros recogen el efecto de la entrada en vigor en España del Real Decreto-Ley 3/2016, del 2 de diciembre, por el que se han adoptado medidas tributarias dirigidas a la consolidación de las finanzas públicas consistentes en la modificación de los límites para la compensación de bases imponibles negativas, del régimen de reversión de deterioros de valor de participaciones y en la no deducibilidad de las pérdidas como consecuencia de la transmisión de participaciones en determinadas entidades, no siendo significativo para la situación patrimonial o los resultados del Grupo

¿Cuál es la consecuencia de la entrada en vigor en España del Real Decreto-Ley 3/2016 del 2 de diciembre?se han adoptado medidas tributarias dirigidas a la consolidación de las finanzas públicas consistentes en la modificación de los límites para la compensación de bases imponibles negativas, del régimen de reversión de deterioros de valor de participaciones y en la no deducibilidad de las pérdidas como consecuencia de la transmisión de participaciones en determinadas entidades

Table 2: Sample for Spanish

For both subtasks, participants can use any method they see fit (regex, corpus linguistics, entity relationship models, deep learning methods) to provide the cause or the effect questioned.

Shared Task Organisers

Shared task organised by the Computational Linguistics Laboratory at Autonomous University of Madrid:

• Antonio Moreno-Sandoval (UAM, Spain)
• Jordi Porta (UAM, Spain)
• Yanco Torterolo (UNED, Spain)
• Alexia Stanescu (UAM, Spain)
• Melina Chatzi (UAM, Spain)
• Sofía Roseti (UAM, Spain)

Shared Task Contact

For any questions, please contact the organisers at lli@uam.es.

Key Dates

First CFP: 22 December 2025
Second CFP: 5 January 2026
Training set release: 8 January 2026
Blind test set release: 1 February 2026
Systems submission: 16 February 2026
Release of results: 20 February 2026
Paper Submission Deadline: 6 March 2026
Notifications of Acceptance: 11 March 2026
Camera-ready Paper Deadline: 30 March 2026
Workshop Date: 16 May 2026

Financial Document Causality Detection Task (FinCausal 2026). Computational Linguistics Laboratory, Autonomous University of Madrid, 2026.