
Extending Tree-adjoining grammars and Minimalist Grammars with
unbounded scrambling: an overview of the problem area

Alexander Perekrestenko

Universitat Rovira i Virgili
Departamento de Filologías Románicas
Grupo de Investigación en Lingüística Matemática

Pl. Imperial Tarraco 1; 43005 Tarragona

alexander.perekrestenko@estudiants.urv.cat

Abstract
In this paper we give an overview of restricted formalisms used as a basis for formal syntactic theories
and discuss the problem of extending these formalisms with an adequate representation of nonlocal
scrambling, the phenomenon of structural discontinuity leading to the intermingling of the fragments
belonging to different syntactic constituents.

Keywords: syntax, restricted formalisms, Tree-adjoining Grammars, Minimalist Grammars, scrambling

Resumen
En este artículo presentamos unos formalismos restringidos utilizados como base para distintas teorías
formales de sintaxis y tratamos el problema de la extensión de estos formalismos para la representación
correcta del fenómeno sintáctico llamado scrambling no local. Este fenómeno de discontinuidad
estructural hace que se entremezclen fragmentos de diferentes constituyentes sintácticos.

Palabras clave: sintaxis, formalismos restringidos, gramáticas de adjunción de árboles, gramáticas
minimalistas, scrambling

Resum
En aquest article presentem uns formalismes restringits usats com a base per a diferents teories
sintàctiques formals i tractem el problema de l’extensió d’aquests formalismes per a la representació
correcta del fenomen sintàctic conegut com a scrambling no local. Aquest fenomen de discontinuïtat
estructural fa que es barregin fragments pertanyents a diferents constituents sintàctics.

Paraules clau: sintaxi, formalismes restringits, gramàtiques d’adjunció d’arbres, gramàtiques
minimalistes, scrambling

Table of contents

1. Introduction
2. Formalisms
3. Tree-adjoining grammars
4. Scrambling
5. Minimalist Grammars
6. Conclusions
7. References
8. Appendix 1
9. Appendix 2

1. Introduction

Syntax as a theory describes how words of a language combine to form bigger units,
sentences, with which we communicate. Human language differs from other communi-
cation systems, such as the “language” of animals or artificial sign systems, in that it
allows compositionality of meaning that is possible due to its powerful structure com-
position device which we call syntactic component. In the 20th century, a number of
syntactic theories have emerged that viewed syntax from different perspectives and used
different methodology to describe the object of their study. The application of exact
mathematical models in syntactic research began on a large scale in the 1950s with
Noam Chomsky’s Transformational Grammar. Since then a number of theoretical syn-
tactic frameworks with different degree of formalization/formalizability have been
proposed, of which Lexical-Functional Grammar (LFG), Generalized Phrase Structure
Grammar (GPSG), Head-driven Phrase Structure Grammar (HPSG), Meaning-Text
Theory (MTT), Tree-adjoining Grammars (TAG), Government and Binding Theory
(GB), and the Minimalist Program have had the biggest impact on syntactic research.

In the description of syntax there are two basic approaches possible with respect to what
aspects of the structure the backbone component of the theory is intended to capture.
Sentences can be described in terms of their constituent structure or in terms of the
dependencies existing between the elements of the sentence, whatever these elements
might be. In the first approach, every syntactic structure is considered as being com-
posed of smaller units which are composed of other even smaller units and so on, until
we arrive at the lexical elements. This way of specifying syntax is used in the so-called
phrase structure grammars. A typical representative of this class of syntactic frame-
works is the Transformational Grammar in its early versions.1 The latter approach nor-
mally does not imply the existence of intermediate composite structures and operates
directly on lexical elements, describing syntactic structures in terms of the relationships
existing between the words they contain. Frameworks of this kind are usually referred
to as dependency grammars. A framework that is predominantly based on this approach
is the syntactic component of the Meaning-Text Theory (Mel’čuk 1974, 1988). Each of
these approaches captures only certain aspects of syntax whereas both the constituent
structure and the structure of dependencies are necessary in order to obtain a complete
picture of how a language is organized on the syntactic level. Most of the theories of
syntax take into account both constituent and dependency structure. In this paper we
will limit ourselves to the representation of the constituent structure and to the corre-
sponding formalizations.

The mentioned syntactic frameworks with the exception of GB and, to a certain extent,
Minimalist Program and MTT are based on strict mathematical concepts. In this respect,
a special status can be attributed to Tree-adjoining Grammars which are actually not a
syntactic theory as such, but rather a purely mathematical formalism that has proved to
be well-suited for the description of natural language syntax. They were originally
inspired in the GB and its predecessor theories, but came later to be used as an inde-
pendent syntactic framework (Frank 2002).

Another promising formalism that potentially can be used for practical syntactic de-
scription are Minimalist Grammars (MG) proposed in (Stabler 1997) as a formal tool

1 The result of its evolution known as Government and Binding Theory (Chomsky 1995) is no longer so
one-sidedly constituent-structure-oriented.

for modeling the fundamental structure-building operations of the Minimalist Program,
an approach adopted within the Chomskyan branch of syntactic theory (Chomsky 1995,
2001). The comparatively lesser popularity of MGs compared to TAGs can be ex-
plained with a certain bias of MGs towards the Chomskyan concept of syntax while
TAGs appear to be more theory-independent. Nevertheless, MGs can be used as a con-
venient formal device for the representation of syntax for practical purposes like gram-
mar engineering and parsing.

2. Formalisms

The following classes of formalisms usually come into consideration as a base for syn-
tactic theories:

Right-linear (regular) grammars. These grammars can only be used for so-called
shallow parsing. They are not powerful enough to describe natural languages even in
the weak sense, i.e., in terms of their terminal sequences. This idea can be informally
illustrated by the following example of embedded infinitival clauses in German:

(er is bereit) die Kinder das Haus anstreichen zu lassen
(he is ready) [the children]NP [the house]NP [to paint]V [to let]V
‘(he is ready) to let the children paint the house’

There is potentially no limit on the number of embedded infinitival clauses:

(er is bereit) Hans die Kinder das Haus anstreichen zu lassen zu versprechen
(he is ready) [Hans]NP [the children]NP [the house]NP [paint]V [to let]V [to promise]V
‘(he is ready) to promise Hans to let the children paint the house’

In this class of sentences, we have the non-regular language { NPi Vi | i ∈N }.2 Since
regular grammars do not support arbitrary recursion, they cannot be used as a formal
basis of a syntactic theory.

Context-free grammars. Although context free grammars (CFG) can describe a big
part of the natural language sentences in the weak sense, i.e., as strings of words, they
fail to assign appropriate structural descriptions to sentences containing discontinuous
constituents. Using CFG rules we can describe the structure of the sentence consisting
of continuous constituents only, like for example John saw Mary yesterday:

2 A more rigorous argument would involve an intersection with a regular languages and a morphism.

But it is impossible to produce an adequate descriptions for sentence with discontinuous
constituents, like Whom did John see yesterday? if we only have a CFG-based descrip-
tional device:

This is the reason why pure CFG-based formalisms without extensions cannot be used
in constituent based syntactic frameworks.3 On the other hand, CFGs have several
attractive properties: they are easy to use in parsing, their properties are well studied,
and they make it possible to describe the vast majority of syntactic structures of natural
languages at least in the weak sense, that means that they only need a “slight” extension
in order to become suited for syntactic description.

Mildly context-sensitive grammars. Formalisms of this class have their motivation in
linguistics as there are several phenomena in natural languages requiring for their gen-
eralized description formal devices which are more powerful than CFGs, even in the
weak sense. There has been much discussion of these phenomena in the past, so we will
not go into the details of these cases here.

A class G of grammars is said to be mildly context-sensitive if it satisfies the following
conditions:

1. G includes all context-free languages, and there are grammars G1, G2, and G3 in
G generating the languages { ww | w∈∑* }, { am bn cm dn | a,b∈∑*, m,n∈N }
and { an bn cn | a,b,c∈∑*, n∈N }.

2. For every grammar G∈G, the language L(G) has a constant growth property.
3. For every grammar G∈G and a word w∈L(G), the membership problem

¿w∈G(L)? is decidable in deterministic polynomial time with respect to the
length of w.

The best studied and most widely used mildly context-sensitive syntactic formalisms are
local Tree-adjoining Grammars (TAGs) and Minimalist Grammars (MGs).

Mildly context-sensitive grammars were proposed as a constrained formalism for the
description of natural language syntax. The idea was to create a formal system that

3 Though, it should be noted that arguments about syntactic structures are always based on the stipulations
of the syntactic theory in question. In this particular case it means that within the commonly accepted
view of what a syntactic constituent is, no acceptable description of this sentence can be given using CFG
rules only. This in principle does not exclude a possibility that with other syntax-theoretical assumptions
this example could very well be rendered by a CFG-based framework.

would only be powerful enough to describe the syntactic structures of natural languages
and nothing else and that would therefore serve as an exact mathematical model of the
syntactic component of the language.

Computationally unrestricted formalisms. Unification-based syntactic frameworks
with unrestricted structure sharing strictly speaking do not belong to the class of re-
stricted grammars since they are based on unification formalisms which are Turing-
equivalent. The problem of the computational universality of the formalism itself is
solved with the design of grammars that do not exploit the full power of the formalism.
In this case, computational universality is certainly not motivated linguistically, but
rather the way the formalism is constructed appears convenient for its use within the
syntactic theory which in principle “does not care” about the computational properties
of the formalism it is based upon as long as the formalism provides it with all the means
necessary for the intuitively appealing description of syntactic structures and allows a
polynomial-time processing for linguistically adequate descriptions. HPSG can be
mentioned as an example of a computationally restricted grammar framework based on
a Turing-equivalent formalism (a unification grammar).

3. Tree-adjoining grammars

Tree-adjoining grammars (TAG) are the best known and the most widely used mildly
context-sensitive syntactic formalism. In linguistics, normally lexicalized TAGs are
used. Elementary structures of a TAG are trees. In a lexicalized TAG, each tree has a
lexical anchor associated with it. Each such tree represents a lexical entry. Lexicalized
TAGs do not use rules as the way syntactic structures are constructed is coded in the
lexical entries.

The definitions of the so-called pure tree-adjoining grammars and tree-adjoining gram-
mars with adjunction constraints based on (Joshi 1997) are given in the Appendix 1.

Below we give the example of a TAG generating the sentence John really likes Mary.
The grammar contains the trees α0, α1, α2, and β:

The derivation proceeds as illustrated in the following picture where the trees α1 and α2
are attached into the tree α0 by means of the substitution and the tree β is inserted into
α0 by adjunction:

⇒

A number of extensions to TAGs have been proposed in order to cope with syntactic
phenomena unprocessable with single-component TAGs. Some of these extension are
Multicomponent TAGs (MCTAG) introduced in (Joshi 1987; Weir 1988) that can be
tree-local (tlMCTAG), set-local (slMCTAG) and non-local (nlMCTAG), vector TAGs
with dominance links and integrity constraints (VTAG-Δ) (Rambow 1994), Multicom-
ponent TAGs with shared nodes (SN-MCTAG) (Kallmeyer 2005) and Multicomponent
TAGs with tree tuples (TT-MCTAG) (Lichte 2007).

4. Scrambling

Originally, scrambling was the name for the kind of the argument permutation observed
in the so-called middlefield (Mittelfeld) in German. However, this phenomenon is also
attested in many other languages, e.g., in Hindi, Japanese, Korean, Russian and Turkish.
Here we will mostly illustrate scrambling on German examples, but the results can
probably without much change be extended to other languages. In German, the NP and
PP arguments (i.e., subject(s) and objects), roughly speaking, can be freely permutated
in the space between:

• a finite verb on the left and the leftmost non-finite verb, a verbal particle or the
nonverb part of an idiomatic expression on the right, or

• a complementizer on the left and the leftmost verb or the nonverb part of an
idiomatic expression on the right.

The computationally most problematic case of this phenomenon is the so-called un-
bounded nonlocal scrambling consisting in the permutation of the arguments belonging
to different verbal heads. In this kind of scrambling, a change in the linear order of the
constituents is the result of the displacement of some of them from their infinitival
clauses into the matrix clause. Since the depth of the infinitival clause embedding is
potentially unlimited, we can have any number of arbitrarily ordered arguments “jump-
ing up” from embedded infinitival clauses to the matrix clause as shown in the follow-
ing examples based on (Rambow 1994). All the sentences of this example mean ‘that
no-one has tried to promise the customer to repair the refrigerator’:

...dass niemand [[dem Kunden] [[den Kühlschrank] zu reparieren] zu versprechen]
versucht hat
...that no-one [[the customer] [[the refrigerator] to repair] to promise] tried has

...dass niemand [den Kühlschrank]i [[dem Kunden] [ti zu reparieren] zu
versprechen] versucht hat
...that no-one [the refrigerator]i [[the customer] [ti to repair] to promise] tried has

...dass [den Kühlschrank]i niemand [[dem Kunden] [ti zu reparieren] zu
versprechen] versucht hat
...that [the refrigerator]i no-one [[the customer] [ti to repair] to promise] tried has

...dass [dem Kunden]j niemand [tj [[den Kühlschrank] zu reparieren] zu
versprechen] versucht hat
...that [the customer]j no-one [tj [[the refrigerator] to repair] to promise] tried has

...dass [den Kühlschrank]i [dem Kunden]j niemand [tj [ti zu reparieren] zu
versprechen] versucht hat
...that [the refrigerator]i [the customer]j no-one [tj [ti to repair] to promise] tried has

...dass [dem Kunden]j [den Kühlschrank]i niemand [tj [ti zu reparieren] zu
versprechen] versucht hat
that [the customer]j [the refrigerator]i no-one [tj [ti to repair] to promise] tried has.

In German, long-distance scrambling can only proceed from non-tensed clauses.
Phrases in which the boundary of a tensed clause is crossed are perceived as incorrect:

*Peter hat [den Kühlschrank]i versprochen, dass er ti reparieren wird
Peter has [the refrigerator]i promised, that he ti repair will
Intended reading: ‘Peter has promised that he will repair the refrigerator’

Arguments cannot scramble out of non-complementized tensed clauses either so that the
scrambling renders a strongly deviant structure in the following case as well:

*Peter hat [den Kühlschrank]i gesagt, er wird ti reparieren
Peter has [the refrigerator]i said, he will ti repair
Intended reading: ‘Peter has said he will repair the refrigerator’

Thus a syntactic formalism extended with scrambling must also provide for the possibil-
ity to restrict scrambling in the way indicated above.

As was shown in (Becker 1992), unbounded scrambling cannot be adequately described
by local MCTAGs. Vector TAGs with dominance links and integrity constraints
(VTAG-Δ) seem to be the only formalism capable of modeling scrambling with barriers
in a way that also permits polynomial-time recognition, provided some restrictions are
imposed on the derivation which are satisfied if the formalism is lexicalized. It is not
known what class of languages a VTAG-Δ without this restrictions is able to generate,
but it can be conjectured that the recognition problem for them will most probably be
NP-hard. Generally, the situation with the formalization of scrambling is such that all
known TAG-based formalisms able to provide a general (or close-to-general) account of
scrambling are either

• NP-hard – see e.g. (Champollion 2007) for the NP-completeness proof for a re-
stricted version of nlMCTAGs and (Søgaard 2007) for the NP-hardness results
on free-order TAGs, unrestricted SN-MCTAGs and TT-MCTAGs), or

• they can only account for scrambling from imbedded clauses of a depth limited
by a constant – the result on SN-MCTAG-k in (Kallmeyer 2005) provides an
example of this restriction, or

• (apparently) require additional restrictions on the derivation, external to the for-
malism itself (Rambow 1994).

At this moment, no TAG-based formalism is known that would account for unbounded
nonlocal scrambling in the generalized way and that at the same time would be provably
free from the above-mentioned limitations.

5. Minimalist Grammars

Minimalist Grammars (MGs) were proposed in (Stabler 1997) as a formal tool for
modeling some fundamental structure-building operations of the Minimalist Program
(Chomsky 1995, 2001). Unrestricted Minimalist Grammars introduced in (Stabler 1997)
belong to the class of mildly context-sensitive grammar formalisms and are weakly
equivalent to slMCTAGs. This follows from the results in (Michaelis 1998; 2001), and
(Harkema 2001).

The “standard” MG uses two structure-building operations – merge and move. The
merge operator combines trees to produce new trees in a way structurally similar to the
substitution in TAGs. The move operator displaces a subtree whose head is licensed for
movement into another position within the tree. Following the principles of the Mini-
malist approach, movement is assumed to be triggered by the necessity of one category
to “check off” its features against some other category. The failure of a category to
check off its features as well as the failure of a category to act as a checker for another
one makes the derivation crash.

The generative power of MGs largely depends on the presence or absence of the so-
called locality constraints (LCs). Two best investigated LCs in terms of their effect on
the weak generative capacity of MGs are the shortest-move constraint (SMC) and the
specifier island constraint (SPIC). The SMC prohibits competitive displacement of
constituents, while the SPIC bars displacements from within constituents in specifier
positions. Since movement goes to specifier positions, SPIC also bars displacements
from within constituents that have moved. The so-called unrestricted MGs proposed in
(Stabler 1997) only use SMC. In (Michaelis 2005) it was proved that adding SPIC to the
MSC-restricted MG makes it less powerful. On the other hand, using only SPIC without
SMC makes the formalism Turing-equivalent (Kobele 2005).

In order to model some specific syntactic operations not incorporated into the original
version of MG, the formalism was extended with the operation of scrambling and (cy-
clic) adjunction in (Frey 2002) and countercyclic adjunction in (Michaelis 2003). How-
ever, the scrambling operator introduced in (Frey 2002) was restricted by SMC which
reduced it to an operation similar to non-obligatory movement making the generalized
description of this syntactic phenomenon impossible. From the formal point of view, the
way SMC is introduced for movement does not make much sense for scrambling as an
SMC-restricted scrambling can be simulated by movement. In order to get a linguisti-
cally meaningful definition of scrambling, the formalism must also implement barriers.

A mathematically strict definition of MG with unbounded nonlocal scrambling and
nondiscriminating barriers is given in Appendix 2. It follows the definition in (Perek-
restenko 2008) which is based on the definitions proposed in (Gärtner 2007) extended
with barriers and the corresponding modification of the scrambling operator.

From the linguistic perspective, the principal difference between MGs and TAGs con-
sists in the way they treat discontinuous constituents. TAGs use an extended domain of
locality so that each tree in a TAG (or a tree set in an MCTAG)4 corresponds to a single
constituent. Eventual adjunction into such a tree “splits” it making in this way the con-
stituent it represents discontinuous. In MGs, the discontinuity of a constituent is a result
of the displacement of a part of the constituent into some other position in the tree. In
this manner, MGs do not employ the notion of locality used in TAGs.

Below we will illustrate the derivation in MG with two examples.

Example 1. Lexicon: #.=d.=d.v.likes; #.d.John; #.d.beer
Derivation of the phrase John likes beer using the merge operator:

Example 2. Lexicon: #.=d.=d.v.likes; #.d.John; #.d.-wh.what; #.=v.+wh.c
Fragment of the derivation of the subordinate clause …what John likes using the move
operator displacing the DP what from the object position of the verb likes.

In (Perekrestenko 2007; 2008), MGs were extended with scrambling and barriers.
Scrambling as defined there operates basically like a movement, but it is optional and
not limited by SMC. Moreover, it is restricted by barriers – subtrees out of which other

4 In MCTAGs, tree sets are sometimes seen as trees with relaxed dominance relation.

constituents cannot scramble. The definition presented in the first paper uses category
sensitive barriers blocking scrambling of specific categories while the extension to MGs
defined in latter one employs nondiscriminating barriers blocking scrambling of any
category.

As was shown in (Perekrestenko 2008), extending an MG with unrestricted scrambling
and barriers makes the fixed recognition problem for the resulting formalism NP-hard
even if only nondiscriminating barriers are used.

In (Gärtner 2007), scrambling was defined as extraposition to the right whereas the
scrambling operator introduced in (Perekrestenko 2008) displaces constituents to the
left, like movement. We conjecture that changing the direction of scrambling will not
alter the validity of the result presented in the latter paper.

Another interesting question raised in (Gärtner 2007) is the effects of the so-called
Adjunct Island Condition (AIC) disallowing constituent displacements from within
adjuncts in the MG extended with countercyclic adjunction. As was indicated in (Micha-
elis 2003), countercyclic adjunction can circumvent the SMC, but adding the AIC to an
SMC-restricted MG with countercyclic adjunction makes this “trick” impossible (Gärt-
ner 2007).

As can be seen comparing the MG formalisms in (Gärtner 2007) and in (Perekrestenko
2008), an MG with unrestricted scrambling defined in the latter paper can be modeled
by an SMC-restricted MG with countercyclic adjunction and without AIC, as presented
in the first paper, provided no barriers are used. It is not clear in how far barriers affect
the complexity of the recognition problem for the MG extended with unrestricted
scrambling. It might happen that the universal recognition problem for an MG with
scrambling and without barriers will be NP-hard while the fixed recognition problem
might be in P.

6. Conclusions

As it turns out, MGs despite being derivationally different from TAGs do not contain
any inherent “remedy” against the consequences of introducing unbounded scrambling
with barriers into an originally polynomially processable formalism. It is not yet clear if
it is possible to modify MGs with scrambling and barriers in a way that would allow
polynomial-time processing and a generalized description of scrambling with barriers at
the same time. This question remains to be investigated.

7. References

Becker, Tilman, Aravind Joshi, and Owen Rambow (1991). “Long Distance Scrambling
and Tree Adjoining Grammars”. In Proceedings of the 5th Conference of the European
Chapter of the Association for Computational Linguistics, Berlin, Germany.

Becker, Tilman, Owen Rambow, and Michael Niv. 1992. “The derivational generative
power, or, scrambling is beyond LCFRS”. Technical report, University of Pennsylvania.

Champollion, Lucas (2007). Lexicalized non-local MCTAG with dominance links is
NP-complete. In Proceedings of Mathematics of Language 10, UCLA. CSLI On-Line
Publications. To appear.

Chomsky, Noam (1995). The Minimalist Program. The MIT Press.

Chomsky, Noam. 2001. “Derivation by phase”. In M. Kenstowicz, ed. (2001). Ken
Hale: A Life in Language. Cambridge, MA: MIT Press.

Frank, Robert (2002). Phrase Structure Composition and Syntactic Dependencies. The
MIT Press.

Frey, Werner, and Hans-Martin Gärtner (2002). “On the treatment of scrambling and
adjunction in minimalist grammars”. In Jäger, G., P. Monachesi, G. Penn, and
S. Wintner, eds. (2002). Proceedings of Formal Grammar 2002, Trento, 41-52.

Gärtner, Hans-Martin, and Michaelis, Jens (2007). “Some remarks on locality condi-
tions and minimalist grammars”. In Sauerland, U., and H.-M. Gärtner, eds.(2007).
Interfaces + Recursion = Language? Chomsky’s Minimalism and the View from Syntax
and Semantics. Mouton de Gruyter, Berlin, 161-195.

Harkema, Henk (2001). “A characterization of Minimalist languages”. In de Groote,
Ph., G. Morrill and Chr. Retoré, eds. (2001). Proceedings of the 4th International Con-
ference on Logical Aspects of Computational Linguistics, LACL’2001, France.

Joshi, Aravind K. (1987). “An introduction to tree adjoining grammars”. In A. Manas-
ter-Ramer, ed. (1987). Mathematics of Language. John Benjamins, Amsterdam, 87-114.

Joshi, Aravind K., and Yves Schabes (1997). “Tree-Adjoining Grammars”. In Rozen-
berg, G., and A. Salomaa, eds. (1997). Handbook of Formal Languages, Vol. 3, Berlin,
New York: Springer, 69-124.

Kallmeyer, Laura (2005). “Tree-Local Multicomponent Tree Adjoining Grammars with
Shared Nodes”. Computational Linguistics 32(2): 187-225.

Kobele, Gregory, and Jens Michaelis (2005). “Two type 0-variants of Minimalist
Grammars”. In Jäger, G., P. Monachesi, G. Penn, and S. Wintner, eds. (2002). Proceed-
ings of Formal Grammar 2002, Trento.

Lichte, Timm (2007). “An MCTAG with Tuples for coherent constructions in German”.
In Proceedings of the 12th Conference on Formal Grammar 2007. Dublin, Ireland.

Mel’čuk, Igor A. (1974). Opyt teorii lingvističeskih modelej “Smysl ⇔ Tekst”. Mos-
cow: Nauka Publishing House. [In Russian: Мельчук И. А. (1974). Опыт теории
лингвистических моделей “Смысл ⇔ Текст”. Москва: Наука.]

Mel’čuk, Igor A. (1988). Dependency Syntax: Theory and Practice. NY: SUNY Publi-
cations.

Michaelis, Jens (1998). “Derivational Minimalism is mildly context-sensitive”. In
Moortgat, M., ed. (1998) Selected Papers of the 3rd International Conference on Logi-
cal Aspects of Computational Linguistics, LACL’1998, Grenoble, France.

Michaelis, Jens (2001). “Transforming linear context-free rewriting systems into Mini-
malist Grammars”. In de Groote, Ph., G. Morrill and Chr. Retoré, eds. (2001). Proceed-
ings of the 4th International Conference on Logical Aspects of Computational Linguis-
tics, LACL’2001, France.

Michaelis, Jens, and Hans-Martin Gärtner (2003). “A Note on countercyclicity and
Minimalist Grammars”. In Jäger, G., P. Monachesi, G. Penn and S. Wintner, eds.
(2003). Proceedings of the 8th conference on Formal Grammar, Vienna, Austria.

Michaelis, Jens (2005). “An additional observation on strict derivational Minimalism”.
In Jäger, G., P. Monachesi, G. Penn, and S. Wintner, eds. (2002). Proceedings of For-
mal Grammar 2002, Trento.

Perekrestenko, Alexander (2007). “A note on the complexity of the recognition problem
for the minimalist grammars with unbounded scrambling and barriers”. In Díaz Madri-
gal, Víctor J., and Fernando Enríquez de Salamanca Ros, eds. (2007). Actas del XXIII
Congreso de la Sociedad Española para el Procesamiento del Lenguaje Natural,
Seville, Spain, 27-34.

Perekrestenko, Alexander (2008). “Minimalist Grammars with unbounded scrambling
and nondiscriminating barriers are NP-hard”. Proceedings of the 2nd International
Conference on Language and Automata Theory and Applications, LATA'2008.

Rambow, Owen. 1994. Formal and Computational Aspects of Natural Language Syn-
tax. PhD thesis. IRCS Technical Report, University of Pennsylvania.

Søgaard, Anders, Timm Lichte, and Wolfgang Maier (2007). “On the complexity of
linguistically motivated extensions of Tree-Adjoining Grammar”. In Recent Advances
in Natural Language Processing 2007. Borovets, Bulgaria.

Stabler, Edward (1997). “Derivational Minimalism”. In Retore, Chr., ed. (1997) Logical
Aspects of Computational Linguistics, Springer, 68-95.

Weir, David J. 1988. Characterizing mildly context-sensitive formalisms. PhD thesis.
University of Pennsylvania.

8. Appendix 1

Pure tree-adjoining grammar

A pure tree-adjoining grammar (pure TAG) is a 5-tuple〈T,N, I,A,S〉 such that:

• T is a finite set ofterminal symbols;

• N is a finite set ofnonterminal symbols, T ∩N = /0;

• S is a distinguished nonterminal symbol (the initial symbol), S ∈ N;

• I is a finite set ofinitial trees, characterized as follows:

– the interior nodes are labeled by nonterminal symbols,

– the frontier nodes are labeled by terminals or nonterminals, the nonterminals
of the frontier are marked for substitution(↓);

• A is a finite set ofauxiliary trees, characterized as follows:

– the interior nodes are labeled by nonterminal symbols,

– the frontier nodes are labeled by terminals or nonterminals, the nonterminals
of the frontier are marked for substitution(↓) except for one nonterminal,
which must be label-identical to the root of the tree; this nonterminal is called
foot node and is marked with an asterisk(∗).

The trees inI ∪A are calledelementary trees. A tree built by their composition is called
a derived tree. There are two tree-combining operations building new derived trees: ad-
junction and substitution.

Adjunction builds a new tree inserting a tree that has a foot in place of a non-leaf node
of another tree having the same label. Supposeα is a tree containing a non-leaf node
n labeledB, andβ is a tree containing a foot node also labeledB. The resulting tree,
obtained by adjoiningβ into α, is built as follows:

• the subtree ofα with the rootn, call it t, is detached leaving a copy ofn in α;

• the treeβ is attached to the noden of the treeα, and this noden is identified with
the root node ofβ;

• the treet is attached to the foot node ofβ, and the root node oft is identified with
the foot node ofβ.

This implies that the treeα, into whoseB-labeled noden the threeβ is adjoined, loses its
ownB node in that it gets replaced by the threeβ. By definition, adjunction is disallowed
on nodes marked for substitution and normally also in foot nodes. In the illustration below,
theB-rooted tree is adjoined in place of theB-labeled node of the tree with the rootA:

A

B

B

*B

⇒

A

B

B

Substitution builds a new tree by replacing a non-foot leaf node of a tree with another
tree without foot. How it works is illustrated below. TheB-labeled node of theA-rooted
tree is here replaced with theB-rooted tree:

A

B

↓B

⇒

A

B

Tree-adjoining grammar

In a pure TAG, a treeβ can be adjoined on a non-leaf noden of a treeα provided the
label ofn is identical to the root label ofβ. For the linguistic purposes, it is convenient to
have some control over the adjoining operations. This control is realized by means of the
so-calledadjunction constraints which increase the power of the formalism.

A tree-adjoining grammar with adjunction constraints, usually referred to astree-adjoining
grammar, is a 5-tuple〈T,N, I,A,S〉 such that:

• T , N, I, A, andS are the same as in the definition of pure TAGs;

• (some of) the internal nodes of the trees are provided with one of the following
makers:

– OA{β1,β2, . . . ,βn} – obligatory adjunction constraint stipulating that one of
the treesβ1,β2, . . . ,βn must adjoin at the given node,

– SA{β1,β2, . . . ,βn} – selective adjunction constraint allowing only the trees
from the set{β1,β2, . . . ,βn} to adjoin at the given node,

– NA – null adjunction constraint prohibiting any adjunction at the given node.

9. Appendix 2

A Minimalist Grammar with unbounded scrambling and nondiscriminating barriers,
MGscr

B0 , is a tupleG = 〈¬Syn,Syn,c,#,Lex,Ω〉, such that

• ¬Syn is a finite set of non-syntactic features partitioned into the sets of phonetic
(Phon) and semantic (Sem) features;

• Syn is a finite set of syntactic features disjoint from¬Syn and partitioned into the
following sets:

− base (syntactic) categories,Base, partitioned into
the set of categories without barrierB = { n,v,d,c, t, . . .} and
the set of categories with barrier̄B = { n̄, v̄, d̄, c̄, t̄, . . .},

− m(erge)-selectorsM = { =x | x ∈ B },

− m(ove)-licenseesE = { −x | x ∈ B },

− m(ove)-licensorsR = { +x | x ∈ B },

− s(cramble)-licensees,S = { ∼x | x ∈ B }, and

− ‘#’ which is a special symbol;

• c is a distinguished element ofBase, the completeness category;

• Lex is alexicon defined further on;

• Ω is the set of the structure-building operators ‘merge’, ‘ move’ and ‘scramble’ spec-
ified later.

Let Feat denote the union of the syntactic and non-syntactic features: Feat = Syn∪¬Syn.
An expression over the set of featuresFeat, also called aminimalist tree, is a five-tuple
τ = 〈Nτ,⊳

∗
τ,≺τ,<τ, labelτ〉, obeying the following conditions:

• 〈Nτ,⊳
∗
τ,≺τ〉 is a finite binary ordered tree, whereNτ is a non-empty finite set of

nodes,⊳τ is the binary relation of immediate dominance onNτ, ⊳∗τ is its reflexive
transitive closure, and≺τ is the binary relation of precedence onNτ;

• <τ ⊆ Nτ × Nτ is the asymmetric relation of immediate projection that holds for
any two sibling nodes, so that for eachx ∈ Nτ which is not the root ofτ either
x <τ sibling(x) or sibling(x) <τ x; in the casex <τ y, we say thatx immediately
projects overy;

• labelτ is a leaf-labeling function assigning to each leaf of〈Nτ,⊳
∗
τ,≺τ〉 an element

from Syn∗ {#} Syn∗ Phon∗ Sem∗, whereSyn, Phon, Sem and ‘#’ are as in the defini-
tion of MGscr

B0 .

We denote byExp(Feat) the set of all expressions over the featuresFeat.
Let τ = 〈Nτ,⊳

∗
τ,≺τ,<τ, labelτ〉 ∈ Exp(Feat) be an expression. Leafz ∈ Nτ is thehead

of a given nodex ∈ Nτ if either z andx are the same node orx⊳+
τ z and for eachy ∈ Nτ,

such thatx⊳+
τ y⊳∗τ z, the following holds:y <τ siblingτ(y). (Analogously to the notation

⊳∗, we use the shorthand⊳+ to denote the non-reflexive transitive closure of the dominance
relation.) Expressionτ is said to be ahead, or asimple expression, ifNτ contains exactly
one node. Otherwiseτ is said to be anon-head, or acomplex expression. The head of a
tree is the head of its root. The root of the treeτ is denoted asrτ.

Expression corresponding to a given subtreeφ of τ is referred to as a subexpression of
τ. Such subexpressionφ with root x ∈ Nτ is said to be amaximal projection in τ if either
x is the root ofτ (and, as a consequence, does not have any siblings with respect to τ) or
φ is a proper subexpression ofτ andsiblingτ(x) <τ x. The set of all maximal projections
of τ is denoted asMaxProj(τ).

Expressionφ ∈ MaxProj(τ) overFeat is said todisplay featuref ∈ Feat if its label is
in α# f β whereα,β ∈ Feat∗.

Expressionφ ∈ MaxProj(τ) overFeat is said tocontain featuref ∈ Feat if its label is
in α f α′#ββ′ or in αα′#β f β′ whereα,α′,β,β′ ∈ Feat∗.

Expressionτ is complete if its head label is inSyn∗{#}{c}S?Phon∗Sem∗ and the labels
of all of its leaves are inSyn∗{#}S?Phon∗Sem∗.

Maximal projectionτ is licensed for scrambling (to x) if the head label ofτ displays
feature∼x for somex ∈ B or x̄ ∈ B̄.

Subexpressionφ ∈ MaxProj(τ) is barred for scrambling to τ if there exists a maximal
projectionχ ∈ MaxProj(τ) such thatφ ∈ MaxProj(χ), rφ 6= rχ, rχ 6= rτ and the label ofχ
contains feature ¯x ∈ B̄. The head of the subtreeχ will be called abarrier.

Subexpressionφ ∈ MaxProj(τ) is scrambable to expression τ if τ is a maximal pro-
jection, for somex ∈ Base the head label ofτ displays categoryx or x̄, the subexpressionφ
is licensed for scrambling tox and is not barred for scrambling toτ. For a given maximal
projectionτ, the set of all expressions scrambable to it will be denoted as ScrS(τ).

For two expressionsφ,χ∈Exp(Feat), [< φ,χ] (respectively,[> φ,χ]) denotes the com-
plex expressionψ = 〈Nψ,⊳∗ψ,≺ψ,<ψ, labelψ〉 ∈ Exp(Feat) such thatrψ ⊳ψ rφ, rψ ⊳ψ rχ,
rφ ≺ψ rχ, andrφ <ψ rχ (respectively,rχ <ψ rφ).

The phonetic yield of the (complex) expressionτ, YPhon(τ), is defined as the concate-
nation of thePhon string of the leaf labels in the order in which they occur in the treeτ.

The lexicon of MGscr
B0 , Lex, is a finite set of simple expressions overFeat, each of

which is of the formφ=〈Nφ,⊳
∗
φ,≺φ,<φ, labelφ〉 with Nφ ={ε} and the leaf-labeling func-

tion labelφ assigns to the only node ofφ an element from

{#}M∗ R∗ Base (E ∪S)?Phon∗ Sem∗
.

The structure-building operatorsΩ of MGscr
B0 are defined below in terms of their mapping

type, domain and operation.

Operatormerge

Type: partial mappingExp(Feat)×Exp(Feat) −→ Exp(Feat).
Domain: for any φ,χ ∈ Exp(Feat), the tuple〈φ,χ〉 is in Dom(merge) iff for some
x ∈ B the head label ofφ displays m-selector=x and the head label ofχ displays
categoryx or x̄.
Operation:

merge(φ,χ) =

{

[< φ′,χ′] | φ is simple
[> χ′,φ′] | φ is complex

whereφ′ andχ′ result from the correspondingφ andχ by swapping the # symbol
with the feature immediately following it to the right.

Operatormove

Type: partial mappingExp(Feat) −→ Exp(Feat).

Domain: for anyφ ∈ Exp(Feat), the expressionφ is in Dom(move) iff for somex ∈ B
the head label ofφ displays m-licensor+x and there is a uniqueχ ∈ MaxProj(φ)
displaying m-licensee−x. The uniqueness ofχ prohibiting the occurrence of two or
more competing movement candidates is the way the SMC is implemented for the
move operator.

Operation: move(φ) = [> χ′
,φ′], whereφ′ andχ′ result from the correspondingφ

andχ by swapping the # symbol with the feature immediately following it to the
right and replacing the subtreeχ in φ with a single (empty) node labeledε.

Operatorscramble

Type: partial mappingExp(Feat) −→ 2Exp(Feat).

Domain: for anyφ ∈ Exp(Feat), the expressionφ is in Dom(scramble) if and only if
ScrS(φ) 6= /0.

For a given set of expressionsΦ ⊆ Exp(Feat), let
S′(Φ) = { [> χ′,φ′] | φ ∈ Φ, φ ∈ Dom(scramble), χ ∈ ScrS(φ), φ′ results fromφ by
replacing subtreeχ by a single empty node labeledε, andχ′ results fromχ by swap-
ping the # symbol with the feature immediately following it to the right}.

Let S0(Φ) = Φ andSk+1(Φ) = Sk(Φ)∪S′(Sk(Φ)) for k ≥ 0, k ∈ IN.

Operation: scramble(φ) =
⋃

k∈IN Sk({φ}).

Let G = 〈¬Syn,Syn,c,#,Lex,Ω〉 be an MGscr
B0 . Let CL0(G) = Lex. For k > 0, k ∈ IN,

CLk(G) will be defined as follows:

CLk+1(G) = CLk(G) ∪ {merge(φ,χ) |φ,χ ∈ CLk(G)} ∪

{move(φ) |φ ∈ CLk(G)} ∪

{ scramble(φ) |φ ∈ CLk(G)}

LetCL(G) =
⋃

k∈IN CLk(G). The tree language ofG, MTscr
B0(G), is defined in the following

way:
MTscr

B0(G) = { τ | τ ∈ CL(G) andτ is complete}.

The string language ofG, MLscr
B0(G), is defined as the yields of its tree language:

MLscr
B0(G) = { YPhon(τ) | τ ∈ MTscr

B0(G) }.

	alexpCLG8_1.pdf
	alexpCLG8_2.pdf

